Nat Struct Mol Biol
September 2024
Exocyst is a large multisubunit tethering complex essential for targeting and fusion of secretory vesicles in eukaryotic cells. Although the assembled exocyst complex has been proposed to tether vesicles to the plasma membrane and activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion, the key biochemical steps that exocyst stimulates in SNARE-mediated fusion are undetermined. Here we use a combination of single-molecule and bulk fluorescence assays to investigate the roles of purified octameric yeast exocyst complexes in a reconstituted yeast exocytic SNARE assembly and vesicle fusion system.
View Article and Find Full Text PDFExocytosis is the process by which secretory vesicles fuse with the plasma membrane to deliver materials to the cell surface or to release cargoes to the extracellular space. The exocyst-an evolutionarily conserved octameric protein complex-mediates spatiotemporal control of SNARE complex assembly for vesicle fusion and tethering the secretory vesicles to the plasma membrane. The exocyst participates in diverse cellular functions, including protein trafficking to the plasma membrane, membrane extension, cell polarity, neurite outgrowth, ciliogenesis, cytokinesis, cell migration, autophagy, host defense, and tumorigenesis.
View Article and Find Full Text PDFLetters of recommendation are ubiquitous in the research enterprise. Requesting, writing, and reviewing letters of recommendation are all fraught with bias, especially for individuals from groups historically excluded from research environments. We detail how letter reviewers, requesters, and writers can make letters of recommendation a more equitable tool to evaluate scientists.
View Article and Find Full Text PDFCellular processes are largely carried out by macromolecular assemblies, most of which are dynamic, having components that are in constant flux. One such assembly is the nuclear pore complex (NPC), an ∼50 MDa assembly comprised of ∼30 different proteins called Nups that mediates selective macromolecular transport between the nucleus and cytoplasm. We developed a proteomics method to provide a comprehensive picture of the yeast NPC component dynamics.
View Article and Find Full Text PDFThe fundamental process of polarised exocytosis requires the interconnected activity of molecular motors trafficking vesicular cargo within a dynamic cytoskeletal network. In plants, few mechanistic details are known about how molecular motors, such as myosin XI, associate with their secretory cargo to support the ubiquitous processes of polarised growth and cell division. Live-cell imaging coupled with targeted gene knockouts and a high-throughput RNAi assay enabled the first characterisation of the loss of Rab-E function.
View Article and Find Full Text PDFIn this issue of Structure, Kendall et al. (2020) reveal the cryo-EM structure of the mammalian retromer complex, which is essential in sorting membrane proteins in endosomes. The retromer heterotrimer can oligomerize in multiple conformations; this versatility is promoted by a flexible interface of electrostatic residues on the VPS35 subunit.
View Article and Find Full Text PDFExocyst is an evolutionarily conserved hetero-octameric tethering complex that plays a variety of roles in membrane trafficking, including exocytosis, endocytosis, autophagy, cell polarization, cytokinesis, pathogen invasion, and metastasis. Exocyst serves as a platform for interactions between the Rab, Rho, and Ral small GTPases, SNARE proteins, and Sec1/Munc18 regulators that coordinate spatial and temporal fidelity of membrane fusion. However, its mechanism is poorly described at the molecular level.
View Article and Find Full Text PDFThe exocyst complex plays a critical role in determining both temporal and spatial dynamics of exocytic vesicle tethering and fusion with the plasma membrane. However, the mechanism by which the exocyst functions and how it is regulated remain poorly understood. Here we describe a novel biochemical assay for the examination of exocyst function in vesicle tethering.
View Article and Find Full Text PDFA major challenge for a molecular understanding of membrane trafficking has been the elucidation of high-resolution structures of large, multisubunit tethering complexes that spatially and temporally control intracellular membrane fusion. Exocyst is a large hetero-octameric protein complex proposed to tether secretory vesicles at the plasma membrane to provide quality control of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion. Breakthroughs in methodologies, including sample preparation, biochemical characterization, fluorescence microscopy, and single-particle cryoelectron microscopy, are providing critical insights into the structure and function of the exocyst.
View Article and Find Full Text PDFA fundamental hallmark of eukaryotic cells is their compartmentalization into functionally distinct organelles, including those of the secretory and endocytic pathways. Transport of cargo between these compartments and to/from the cell surface is mediated by membrane-bound vesicles and tubules. Delivery of cargo is facilitated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated membrane fusion of vesicles with their target compartments.
View Article and Find Full Text PDFMembrane trafficking specificity between distinct compartments ensures that cargo proteins and lipids are delivered to their target organelle. However, accurate recognition of cargo carriers by tethering factors on target membranes is poorly understood. TBC1D23 is now identified as an adaptor that links endosome-derived vesicles with golgins at the trans-Golgi.
View Article and Find Full Text PDFA pivotal feature of long-lasting synaptic plasticity is the localization of RNAs and the protein synthesis machinery at synaptic sites. How and where ribonucleoprotein (RNP) transport granules that support this synthetic activity are formed is of fundamental importance. The prevailing model poses that the nuclear pore complex (NPC) is the sole gatekeeper for transit of cellular material in and out of the nucleus.
View Article and Find Full Text PDFVPS45-associated severe congenital neutropenia (SCN) is a rare disorder characterized by life-threating infections, neutropenia, neutrophil and platelet dysfunction, poor response to filgrastim, and myelofibrosis with extramedullary hematopoiesis. We present a patient with SCN due to a homozygous c.1403C>T (p.
View Article and Find Full Text PDFMembrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence.
View Article and Find Full Text PDFFront Cell Dev Biol
May 2016
The exocyst is a hetero-octameric complex that has been proposed to serve as the tethering complex for exocytosis, although it remains poorly understood at the molecular level. Here, we purified endogenous exocyst complexes from Saccharomyces cerevisiae and showed that they are stable and consist of all eight subunits with equal stoichiometry. Using a combination of biochemical and auxin induced-degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer and demonstrated that several known exocyst-binding partners are not necessary for exocyst assembly and stability.
View Article and Find Full Text PDFMembrane fusion is a tightly controlled process in all eukaryotic cell types. The SNARE family of proteins is required for fusion throughout the exocytic and endocytic trafficking pathways. SNAREs on a transport vesicle interact with the cognate SNAREs on the target membrane, forming an incredibly stable SNARE complex that provides energy for the membranes to fuse, although many aspects of the mechanism remain elusive.
View Article and Find Full Text PDFIn eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and into the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multisubunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in intracellular trafficking pathways.
View Article and Find Full Text PDFA protein known for its role in dismantling faulty SNARE complexes can also help to maintain complexes that have formed properly during membrane fusion.
View Article and Find Full Text PDFThe exocyst complex is an evolutionarily conserved multisubunit protein complex implicated in tethering secretory vesicles to the plasma membrane. Originally identified two decades ago in budding yeast, investigations using several different eukaryotic systems have since made great progress toward determination of the overall structure and organization of the eight exocyst subunits. Studies point to a critical role for the complex as a spatiotemporal regulator through the numerous protein and lipid interactions of its subunits, although a molecular understanding of exocyst function has been challenging to elucidate.
View Article and Find Full Text PDF