Publications by authors named "Mary Morada"

Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes.

View Article and Find Full Text PDF

Recent advances in the in vitro cultivation of Cryptosporidium parvum using hollow fiber bioreactor technology (HFB) have permitted continuous growth of parasites that complete all life cycle stages. The method provides access to all stages of the parasite and provides a method for non-animal production of oocysts for use in clinical trials. Here we examined the effect of long-term (>20 months) in vitro culture on virulence-factors, genome conservation, and in vivo pathogenicity of the host by in vitro cultured parasites.

View Article and Find Full Text PDF

Hollow fiber technology is a powerful tool for the culture of difficult-to-grow cells. Cryptosporidium parvum has a multistage sexual and asexual life cycle that has proved difficult to culture by conventional in vitro culture methods. Here, we describe a method utilizing a hollow fiber bioreactor for the continuous in vitro growth of C.

View Article and Find Full Text PDF

Recent studies have illustrated the burden Cryptosporidium infection places on the lives of malnourished children and immunocompromised individuals. Treatment options remain limited, and efforts to develop a new therapeutic are currently underway. However, there are unresolved questions about the ideal pharmacokinetic characteristics of new anti-Cryptosporidium therapeutics.

View Article and Find Full Text PDF

Continuous growth of has proved difficult and conventional culture techniques result in short-term (2-5 days) growth of the parasite resulting in thin-walled oocysts that fail to propagate using cultures, and do not produce an active infection using immunosuppressed or immunodeficient mouse models (Arrowood, 2002). Here we describe the use of hollow fiber bioreactors (HFB) that simulate conditions by providing oxygen and nutrients to host intestinal cells from the basal surface and permit the establishment of a low redox, high nutrient environment on the apical surface. When inoculated with 10 (Iowa isolate) oocysts the bioreactor produced 10 oocysts per ml (20 ml extra-capillary volume) after 14 days, and was maintained for over 2 years.

View Article and Find Full Text PDF

A bisoxyphenylene-bisbenzimidazole series with increasing aliphatic chain length (CH to C H ) containing a meta- (m) or para (p)-benzimidazole linkage to the phenylene ring was tested for ability to inhibit the growth of metronidazole-susceptible (C1) and metronidazole-refractory (085) Trichomonas vaginalis isolates under aerobic and anaerobic conditions. Compound 3m, 2,2'-[α,ω-propanediylbis(oxy-1,3-phenylene)]bis-1H-benzimidazole, displayed a 5.5-fold lower minimum inhibitory concentration (MIC) toward T.

View Article and Find Full Text PDF

Diarrheal disease is a leading cause of pediatric death in economically low resource countries. Cryptosporidium spp. are the second largest member of this group and the only member for which no treatment exists.

View Article and Find Full Text PDF

Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N(1)-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C.

View Article and Find Full Text PDF
Article Synopsis
  • The arginine dihydrolase (ADH) pathway functions similarly to the urea cycle by removing nitrogen from amino acids and producing ATP in cells with mitochondria.
  • In Trichomonas vaginalis, the enzyme arginine deiminase (ADI) is located in a hydrogenosome, while other ADH enzymes are found in the cytosol.
  • Three ADI gene sequences were identified in the T. vaginalis genome, and their localization in the hydrogenosome was confirmed through cloning and tagging experiments.
View Article and Find Full Text PDF

Both Mycoplasma hominis and Trichomonas vaginalis utilize arginine as an energy source via the arginine dihydrolase (ADH) pathway. It has been previously demonstrated that M. hominis forms a stable intracellular relationship with T.

View Article and Find Full Text PDF

A mitochondrion-like organelle (MLO) was isolated from isotonic homogenates of Blastocystis. The organelle sedimented at 5000 g for 10 min, and had an isopycnic density in sucrose of 1.2 g ml(-1).

View Article and Find Full Text PDF

The lead enzymes of polyamine biosynthesis, i.e. ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), were not detected in Toxoplasma gondii [the limit of detection for ODC and ADC was 5 pmol min(-1) (mg protein)(-1)], indicating that T.

View Article and Find Full Text PDF

Cryptosporidosis is a severe opportunistic infection of immuno-compromised individuals for which no reliable therapy exists. The parasite scavenges host-derived polyamines, particularly spermine, which is then converted to the lower polyamines by the combined action of spermidine/spermine N(1)-acetyltransferase (SSAT) and polyamine oxidase (PAO). We have isolated and expressed the Cryptosporidium parvum SSAT for kinetic and molecular comparison with the host enzyme.

View Article and Find Full Text PDF

The in vivo effectiveness of a series of conformationally restricted polyamine analogues alone and selected members in combination with DL-alpha-difluoromethylarginine against Cryptosporidium parvum infection in a T-cell receptor alpha-deficient mouse model was tested. Polyamine analogues were selected from the extended bis(ethyl)-sym-homospermidine or bis(ethyl)-spermine backbone having cis or trans double bonds at the center of the molecule. The cis isomers were found to have significantly greater efficacy in both preventing and curing infection in a mouse model than the trans polyamine analogues when tested in a T-cell receptor alpha-deficient mouse model.

View Article and Find Full Text PDF