There is an increasing need to understand how animals respond to modifications of their habitat following landscape-scale disturbances such as wildfire or timber harvest. Such disturbances can promote increased use by herbivores due to changes in plant community structure that improve forage conditions, but can also cause avoidance if other habitat functions provided by cover are substantially reduced or eliminated. Quantifying the total effects of these disturbances, however, is challenging because they may not fully be apparent unless observed at successional timescales.
View Article and Find Full Text PDFDNA metabarcoding of pollen is a useful tool for studying bee foraging ecology. However, several questions about this method remain unresolved, including the extent to which sequence read data is quantitative, which type of sequence count removal threshold to use and how that choice affects our ability to detect rare flower visits, and how sequence artefacts may confound conclusions about bee foraging behavior. To address these questions, we isolated pollen from five plant species and created treatments comprised of pollen from each species alone and combinations of pollen from multiple species that varied in richness and evenness.
View Article and Find Full Text PDFThe behavioral mechanisms by which predators encounter prey are poorly resolved. In particular, the extent to which predators engage in active search for prey versus incidentally encountering them has not been well studied in many systems and particularly not for neonate prey during the birth pulse. Parturition of many large herbivores occurs during a short and predictable temporal window in which young are highly vulnerable to predation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
Mesopredator release theory suggests that dominant predators suppress subordinate carnivores and ultimately shape community dynamics, but the assumption that subordinate species are only negatively affected ignores the possibility of facilitation through scavenging. We examined the interplay within a carnivore community consisting of cougars, coyotes, black bears, and bobcats using contemporaneous Global Positioning System telemetry data from 51 individuals; diet analysis from 972 DNA-metabarcoded scats; and data from 128 physical investigations of cougar kill sites, 28 of which were monitored with remote cameras. Resource provisioning from competitively dominant cougars to coyotes through scavenging was so prolific as to be an overwhelming determinant of coyote behavior, space use, and resource acquisition.
View Article and Find Full Text PDFMany pollinator populations are experiencing declines, emphasizing the need for a better understanding of the complex relationship between bees and flowering plants. Using DNA metabarcoding to describe plant-pollinator interactions eliminates many challenges associated with traditional methods and has the potential to reveal a more comprehensive understanding of foraging behaviour and pollinator life history. Here we use DNA metabarcoding of ITS2 and rbcL gene regions to identify plant species present in pollen loads of 404 bees from three habitats in eastern Oregon.
View Article and Find Full Text PDFSpatial capture-recapture (SCR) models have become the preferred tool for estimating densities of carnivores. Within this family of models are variants requiring identification of all individuals in each encounter (SCR), a subset of individuals only (generalized spatial mark-resight, gSMR), or no individual identification (spatial count or spatial presence-absence). Although each technique has been shown through simulation to yield unbiased results, the consistency and relative precision of estimates across methods in real-world settings are seldom considered.
View Article and Find Full Text PDFRecurrent environmental changes often prompt animals to alter their behavior leading to predictable patterns across a range of temporal scales. The nested nature of circadian and seasonal behavior complicates tests for effects of rarer disturbance events like fire. Fire can dramatically alter plant community structure, with important knock-on effects at higher trophic levels, but the strength and timing of fire's effects on herbivores remain unclear.
View Article and Find Full Text PDFThese data and analyses support the research article "Wild ungulate herbivory suppresses deciduous woody plant establishment following salmonid stream restoration" Averett et al. (2017) [1]. The data and analyses presented here include: (1) planting density, survival and growth (two years post restoration) of riparian plantings along an ~11 km stream reach in northeastern Oregon as a function of herbivory treatment (protected/not protected from wild ungulate herbivory), habitat type, and planting species; and (2) abundance and height distributions of naturally occurring deciduous woody species along the restored stream reach two years post restoration.
View Article and Find Full Text PDF