Life-long reconstitution of a tissue's resident stem cell compartment with engrafted cells has the potential to durably replenish organ function. Here, we demonstrate the engraftment of the airway epithelial stem cell compartment via intra-airway transplantation of mouse or human primary and pluripotent stem cell (PSC)-derived airway basal cells (BCs). Murine primary or PSC-derived BCs transplanted into polidocanol-injured syngeneic recipients give rise for at least two years to progeny that stably display the morphologic, molecular, and functional phenotypes of airway epithelia.
View Article and Find Full Text PDFCystic fibrosis is a monogenic lung disease caused by dysfunction of the cystic fibrosis transmembrane conductance regulator anion channel, resulting in significant morbidity and mortality. The progress in elucidating the role of CFTR using established animal and cell-based models led to the recent discovery of effective modulators for most individuals with CF. However, a subset of individuals with CF do not respond to these modulators and there is an urgent need to develop novel therapeutic strategies.
View Article and Find Full Text PDFDiseases of the conducting airway such as asthma, cystic fibrosis (CF), primary ciliary dyskinesia (PCD), and viral respiratory infections are major causes of morbidity and mortality worldwide. In vitro platforms using human bronchial epithelial cells (HBECs) have been instrumental to our understanding of the airway epithelium in health and disease. Access to HBECs from individuals with rare genetic diseases or rare mutations is a bottleneck in lung research.
View Article and Find Full Text PDFObjective: Aberrant expression in skeletal muscle of DUX4, a double homeobox transcription factor, underlies pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Although previous studies of FSHD muscle biopsies detected mRNAs encoding DUX4 and its target genes, no studies had reported detection of DUX4 protein. Our objective was to develop a proximity ligation assay (PLA) for DUX4 and to determine if this assay could detect DUX4 protein in FSHD muscle sections.
View Article and Find Full Text PDFAirway basal cells play an essential role in the maintenance of the airway epithelium. Here, we provide a detailed directed differentiation protocol to generate ''induced basal cells (iBCs)'' from human pluripotent stem cells. iBCs recapitulate biological and functional properties of airway basal cells including mucociliary differentiation or in tracheal xenografts, facilitating the study of inherited and acquired diseases of the airway, as well as potential use in regenerative medicine.
View Article and Find Full Text PDFThe derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1;TP63), we track and purify these cells as they first emerge as developmentally immature NKX2-1 lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning.
View Article and Find Full Text PDFA hallmark of severe COVID-19 pneumonia is SARS-CoV-2 infection of the facultative progenitors of lung alveoli, the alveolar epithelial type 2 cells (AT2s). However, inability to access these cells from patients, particularly at early stages of disease, limits an understanding of disease inception. Here, we present an in vitro human model that simulates the initial apical infection of alveolar epithelium with SARS-CoV-2 by using induced pluripotent stem cell-derived AT2s that have been adapted to air-liquid interface culture.
View Article and Find Full Text PDFThe most severe and fatal infections with SARS-CoV-2 result in the acute respiratory distress syndrome, a clinical phenotype of coronavirus disease 2019 (COVID-19) that is associated with virions targeting the epithelium of the distal lung, particularly the facultative progenitors of this tissue, alveolar epithelial type 2 cells (AT2s). Little is known about the initial responses of human lung alveoli to SARS-CoV-2 infection due in part to inability to access these cells from patients, particularly at early stages of disease. Here we present an human model that simulates the initial apical infection of the distal lung epithelium with SARS-CoV-2, using AT2s that have been adapted to air-liquid interface culture after their derivation from induced pluripotent stem cells (iAT2s).
View Article and Find Full Text PDFDevelopment of an anti-SARS-CoV-2 therapeutic is hindered by the lack of physiologically relevant model systems that can recapitulate host-viral interactions in human cell types, specifically the epithelium of the lung. Here, we compare induced pluripotent stem cell (iPSC)-derived alveolar and airway epithelial cells to primary lung epithelial cell controls, focusing on expression levels of genes relevant for COVID-19 disease modeling. iPSC-derived alveolar epithelial type II-like cells (iAT2s) and iPSC-derived airway epithelial lineages express key transcripts associated with lung identity in the majority of cells produced in culture.
View Article and Find Full Text PDFWe present a plasmid-based system in which upstream trans-splicing efficiently generates mRNAs that encode head-to-tail protein multimers. In this system, trans-splicing occurs between one of two downstream splice donors in the sequence encoding a C-terminal V5 epitope tag and an upstream splice acceptor in the 5' region of the pCS2(+) host plasmid. Using deletion and fusion constructs of the DUX4 protein as an example, we found that this system produced trans-spliced mRNAs in which coding regions from independent transcripts were fused in phase such that covalent head-to-tail protein multimers were translated.
View Article and Find Full Text PDFAberrant expression of the full-length isoform of DUX4 (DUX4-FL) appears to underlie pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). DUX4-FL is a transcription factor and ectopic expression of DUX4-FL is toxic to most cells. Previous studies showed that DUX4-FL-induced pathology requires intact homeodomains and that transcriptional activation required the C-terminal region.
View Article and Find Full Text PDFBackground: Mutations in the LAMA2 gene encoding laminin-α2 cause congenital muscular dystrophy Type 1A (MDC1A), a severe recessive disease with no effective treatment. Previous studies have shown that aberrant activation of caspases and cell death through a pathway regulated by BAX and KU70 is a significant contributor to pathogenesis in laminin-α2-deficiency.
Objectives: To identify mechanisms of pathogenesis in MDC1A.
Background: Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD).
View Article and Find Full Text PDFBackground: Both forms of facioscapulohumeral muscular dystrophy (FSHD) are associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite. Chromatin changes due to large deletions of heterochromatin (FSHD1) or mutations in chromatin regulatory proteins (FSHD2) lead to relaxation of epigenetic repression and increased expression of the deleterious double homeobox 4 (DUX4) gene encoded within the distal D4Z4 repeat. However, many individuals with the genetic requirements for FSHD remain asymptomatic throughout their lives.
View Article and Find Full Text PDFAnn Clin Transl Neurol
February 2015
Objective: Pathogenesis in facioscapulohumeral muscular dystrophy (FSHD) appears to be due to aberrant expression, particularly in skeletal muscle nuclei, of the full-length isoform of DUX4 (DUX4-FL). Expression of DUX4-FL is known to alter gene expression and to be cytotoxic, but cell responses to DUX4-FL are not fully understood. Our study was designed to identify cellular mechanisms of pathogenesis caused by DUX4-FL expression.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic dysregulation of the chromosome 4q35 D4Z4 macrosatellite. However, this does not account for the tissue specificity of FSHD pathology, which requires stable expression of an alternative full-length mRNA splice form of DUX4 (DUX4-fl) from the D4Z4 array in skeletal muscle. Here, we describe the identification of two enhancers, DUX4 myogenic enhancer 1 (DME1) and DME2 which activate DUX4-fl expression in skeletal myocytes but not fibroblasts.
View Article and Find Full Text PDFBackground: Congenital muscular dystrophy Type 1A (MDC1A) is a severe, recessive disease of childhood onset that is caused by mutations in the LAMA2 gene encoding laminin-α2. Studies with both mouse models and primary cultures of human MDC1A myogenic cells suggest that aberrant activation of cell death is a significant contributor to pathogenesis in laminin-α2-deficiency.
Methods: To overcome the limited population doublings of primary cultures, we generated immortalized, clonal lines of human MDC1A myogenic cells via overexpression of both CDK4 and the telomerase catalytic component (human telomerase reverse transcriptase (hTERT)).
Facioscapulohumeral muscular dystrophy (FSHD), the most prevalent myopathy afflicting both children and adults, is predominantly associated with contractions in the 4q35-localized macrosatellite D4Z4 repeat array. Recent studies have proposed that FSHD pathology is caused by the misexpression of the DUX4 (double homeobox 4) gene resulting in production of a pathogenic protein, DUX4-FL, which has been detected in FSHD, but not in unaffected control myogenic cells and muscle tissue. Here, we report the analysis of DUX4 mRNA and protein expression in a much larger collection of myogenic cells and muscle biopsies derived from biceps and deltoid muscles of FSHD affected subjects and their unaffected first-degree relatives.
View Article and Find Full Text PDFTo explore possible mechanisms of pathology in facioscapulohumeral muscular dystrophy (FSHD), we generated a novel library of myogenic cells composed of paired cultures derived from FSHD subjects and unaffected first-degree relatives. We prepared cells from biopsies of both biceps and deltoid muscles obtained from each of 10 FSHD and 9 unaffected donors. We used this new collection to determine how family background and disease affected patterns of growth and differentiation, expression of a panel of candidate, and muscle-specific genes, and responses to exogenous stressors.
View Article and Find Full Text PDFThe most common form of childhood congenital muscular dystrophy, Type 1A (MDC1A), is caused by mutations in the human LAMA2 gene that encodes the laminin-α2 subunit. In addition to skeletal muscle deficits, MDC1A patients typically show a loss of peripheral nerve function. To identify the mechanisms underlying this loss of nerve function, we have examined pathology and cell differentiation in sciatic nerves and ventral roots of the laminin-α2-deficient (Lama2(-/-)) mice, which are models for MDC1A.
View Article and Find Full Text PDFBackground: Multiple types of fast and slow skeletal muscle fibers form during early embryogenesis in vertebrates. In zebrafish, formation of the earliest slow myofibers in fin muscles requires expression of the zinc-finger transcriptional repressor Prdm1 (also known as Blimp1). To further understand how the role of Prdm1 in early myogenesis may vary through evolution and during development, we have now analyzed Prdm1 expression in the diverse types of myotubes that form in culture from somitic, embryonic, and fetal chicken myoblasts.
View Article and Find Full Text PDF