Publications by authors named "Mary Lay-Cheng Chuah"

The mammalian ER protein STING (stimulator of interferon genes; also known as MITA, ERIS, MPYS or TMEM173) is an adaptor protein that links the detection of cytosolic dsDNA to the activation of TANK-binding kinase 1 (TBK1) and its downstream transcription factor interferon regulatory factor 3 (IFN3). Recently, STING itself has been found to be the direct receptor of bacterial c-di-GMP, and crystal structures of several human STING C-terminal domain (STING-CTD) dimers in the apo form or in complex with c-di-GMP have been published. Here, a novel set of structures of mouse STING-CTD (mSTING(137-344)) in apo and complex forms determined from crystals obtained under different crystallization conditions are reported.

View Article and Find Full Text PDF

Cyclic di-GMP (c-di-GMP) has emerged as a prominent intracellular messenger that coordinates biofilm formation and pathogenicity in many bacterial species. Developing genetically encoded biosensors for c-di-GMP will help us understand how bacterial cells respond to environmental changes via the modulation of cellular c-di-GMP levels. Here we report the design of two genetically encoded c-di-GMP fluorescent biosensors with complementary dynamic ranges.

View Article and Find Full Text PDF

Bacterial polynucleotide phosphorylase (PNPase) is a 3'-5' processive exoribonuclease that participates in mRNA turnover and quality control of rRNA precursors in many bacterial species. It also associates with the RNase E scaffold and other components to form a multi-enzyme RNA degradasome machinery that performs a wider regulatory role in degradation, quality control and maturation of mRNA and noncoding RNA. Several crystal structures of bacterial PNPases, as well as some biological activity studies, have been published.

View Article and Find Full Text PDF

The innate immune response is the first defence system against pathogenic microorganisms, and cytosolic detection of pathogen-derived DNA is believed to be one of the major mechanisms of interferon production. Recently, the mammalian ER membrane protein STING (stimulator of IFN genes; also known as MITA, ERIS, MPYS and TMEM173) has been found to be the master regulator linking the detection of cytosolic DNA to TANK-binding kinase 1 (TBK1) and its downstream transcription factor IFN regulatory factor 3 (IRF3). In addition, STING itself was soon discovered to be a direct sensor of bacterial cyclic dinucleotides such as c-di-GMP or c-di-AMP.

View Article and Find Full Text PDF

The nucleotide messenger cyclic di-GMP (c-di-GMP) plays a central role in the regulation of motility, virulence, and biofilm formation in many pathogenic bacteria. EAL domain-containing phosphodiesterases are the major signaling proteins responsible for the degradation of c-di-GMP and maintenance of its cellular level. We determined the crystal structure of a single mutant (R286W) of the response regulator RocR from Pseudomonas aeruginosa to show that RocR exhibits a highly unusual tetrameric structure arranged around a single dyad, with the four subunits adopting two distinctly different conformations.

View Article and Find Full Text PDF

c-di-GMP is a major secondary-messenger molecule in regulation of bacterial pathogenesis. Therefore, the c-di-GMP-mediated signal transduction network is of considerable interest. The PilZ domain was the first c-di-GMP receptor to be predicted and identified.

View Article and Find Full Text PDF

Cyclic diguanosine monophosphate (c-di-GMP) is a key signalling molecule involved in regulating many important biological functions in bacteria. The synthesis of c-di-GMP is catalyzed by the GGDEF-domain-containing diguanylate cyclase (DGC), the activity of which is regulated by the binding of product at the allosteric inhibitory (I) site. However, a significant number of GGDEF domains lack the RxxD motif characteristic of the allosteric I site.

View Article and Find Full Text PDF

Messenger bagged: The design of a fluorophore-labeled protein biosensor for the bacterial messenger cyclic di-GMP is described. The biosensor responds to c-di-GMP with sub-micromolar sensitivity in a real-time fashion. The biosensor can be used for enzyme assays for diguanylate cyclases and c-di-GMP phosphodiesterases as well as the high-throughput screening of inhibitors.

View Article and Find Full Text PDF

FimX is a multidomain signaling protein required for type IV pilus biogenesis and twitching motility in the opportunistic pathogen Pseudomonas aeruginosa. FimX is localized to the single pole of the bacterial cell, and the unipolar localization is crucial for the correct assembly of type IV pili. FimX contains a non-catalytic EAL domain that lacks cyclic diguanylate (c-di-GMP) phosphodiesterase activity.

View Article and Find Full Text PDF