Reprod Toxicol
March 2025
Phthalates are synthetic chemical compounds found in consumer products and known endocrine-disrupting chemicals. However, it is not well known if prenatal exposure to phthalate mixtures can affect reproductive health in female offspring. Thus, this study tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture disrupts long-term ovarian function in adult F1 mice.
View Article and Find Full Text PDFThe female reproductive system ages before any other physiological system, making it a sensitive indicator of aging. Early reproductive aging is associated with the early onset of infertility and an increased risk of several diseases. During aging, systemic and reproductive oxidative stress and inflammation levels increase through inflammasome activation, leading to ovarian follicle loss.
View Article and Find Full Text PDFObjective: To investigate the follicular fluid (FF) phthalate levels in adolescents undergoing fertility preservation compared with oocyte donors and explore its association with ovarian reserve and cumulus cell (CC) gene expression.
Design: Retrospective study and molecular analysis of CCs and FF.
Subjects: Adolescents (n = 20, 16.
Phthalate monoesters have been identified as endocrine disruptors in a variety of models, yet understanding of their exact mechanisms of action and molecular targets in cells remains incomplete. Here, we set to determine whether epidemiologically relevant mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) can affect biological processes by altering cell plasma membrane fluidity or formation of cell-cell contacts. As a model system, we chose endometrial stromal cell lines, one of which was previously used in a transcriptomic study with MEHHP or MEHHP-containing mixtures.
View Article and Find Full Text PDFPhthalates, synthetic chemicals widely utilized as plasticizers and stabilizers in various consumer products, present a significant concern due to their persistent presence in daily human life. While past research predominantly focused on individual phthalates, real-life human exposure typically encompasses complex mixtures of these compounds. The cumulative effects of prolonged exposure to phthalate mixtures on uterine health remain poorly understood.
View Article and Find Full Text PDFReprod Toxicol
September 2024
Phthalates are endocrine disrupting chemicals (EDCs) found in common consumer products such as soft plastics and cosmetics. Although the knowledge regarding the adverse effects of phthalates on female fertility are accumulating, information on the hormone sensitive endometrium is still scarce. Here, we studied the effects of phthalates on endometrial cell proliferation and gene expression.
View Article and Find Full Text PDFPhthalates are used as plasticizers and solvents in consumer products. Virtually 100% of the US population has measurable exposure levels to phthalates, however, the mechanisms by which prenatal exposure to phthalate mixtures affects reproductive health in the offspring remain unclear. Thus, this study tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture promotes inflammation in F1 ovarian tissue.
View Article and Find Full Text PDFNeonicotinoids are the most widely used insecticides in the world. They are synthetic nicotine derivatives that act as nicotinic acetylcholine receptor agonists. Although parent neonicotinoids have low affinity for the mammalian nicotinic acetylcholine receptor, they can be activated in the environment and the body to positively charged metabolites with high affinity for the mammalian nicotinic acetylcholine receptor.
View Article and Find Full Text PDFPurpose: To investigate follicular fluid (FF) phthalate levels in adolescents undergoing fertility preservation compared to oocyte donors and explore its association with ovarian reserve and cumulus cell gene expression.
Methods: 20 Adolescents (16.7 ± 0.
Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI ie. HQ-115), a polymer electrolyte used in energy applications, has been detected in the environment, yet its health risks and environmental epigenetic effects remain unknown. This study aims to unravel the potential health risks associated with LiTFSI, investigate the role of DNA methylation-induced toxic mechanisms in its effects, and compare its hepatotoxic impact with the well-studied Perfluorooctanoic Acid (PFOA).
View Article and Find Full Text PDFDi(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood.
View Article and Find Full Text PDFPhthalates are chemicals ubiquitously used in industry. Individual phthalates have been found to adversely affect female reproduction; however, humans are exposed to a mixture of phthalates daily, primarily through ingestion. Previous studies show that exposure to an environmentally relevant mixture of phthalates (Mix) can affect female reproduction.
View Article and Find Full Text PDFDi(2-ethylhexyl) phthalate and diisononyl phthalate are widely used as plasticizers in polyvinyl chloride products. Short-term exposures to phthalates affect hormone levels, ovarian follicle populations, and ovarian gene expression. However, limited data exist regarding the effects of long-term exposure to phthalates on reproductive functions.
View Article and Find Full Text PDFNeonicotinoid insecticides are synthetic nicotine derivatives that have high affinity for invertebrate nicotine receptors and low affinity for mammalian nicotine receptors. However, imidacloprid (IMI), the most commonly used neonicotinoid, can be bioactivated by the liver in mammals to desnitro-imidacloprid, an intermediate metabolite that effectively binds and activates mammalian receptors. However, it is not known if other tissues such as the ovaries can metabolize IMI.
View Article and Find Full Text PDFChemical health risk assessment is based on single chemicals, but humans and wildlife are exposed to extensive mixtures of industrial substances and pharmaceuticals. Such exposures are life-long and correlate with multiple morbidities, including infertility. How combinatorial effects of chemicals should be handled in hazard characterization and risk assessment are open questions.
View Article and Find Full Text PDFImidacloprid is a neonicotinoid pesticide used in large-scale agricultural systems, home gardens, and veterinary pharmaceuticals. Imidacloprid is a small molecule that is more water-soluble than other insecticides, increasing the likelihood of large-scale environmental accumulation and chronic exposure of non-targeted species. Imidacloprid can be converted to the bioactive metabolite desnitro-imidacloprid in the environment and body.
View Article and Find Full Text PDFPhthalates are found in plastic food containers, medical plastics, and personal care products. However, the effects of long-term phthalate exposure on female reproduction are unknown. Thus, this study investigated the effects of long-term, dietary phthalate exposure on estrous cyclicity and fertility in female mice.
View Article and Find Full Text PDFIodoacetic acid (IAA) is an unregulated water disinfection byproduct that is an ovarian toxicant. However, the mechanisms of action underlying IAA toxicity in ovarian follicles remain unclear. Thus, we determined whether IAA alters gene expression in ovarian follicles in mice.
View Article and Find Full Text PDFThe female reproductive system is dependent upon the health of the ovaries. The ovaries are responsible for regulating reproduction and endocrine function. Throughout a female's reproductive lifespan, the ovaries undergo continual structural changes that are crucial for the maturation of ovarian follicles and the production of sex steroid hormones.
View Article and Find Full Text PDFWidespread use of phthalates as solvents and plasticizers leads to everyday human exposure. The mechanisms by which phthalate metabolites act as ovarian toxicants are not fully understood. Thus, this study tested the hypothesis that the phthalate metabolites monononyl phthalate (MNP), monoisononyl phthalate (MiNP), mono(2-ethylhexyl) phthalate (MEHP), monobenzyl phthalate (MBzP), monobutyl phthalate (MBP), monoisobutyl phthalate (MiBP), and monoethyl phthalate (MEP) act through peroxisome proliferator-activated receptors (PPARs) in mouse granulosa cells.
View Article and Find Full Text PDFDi-isononyl phthalate (DiNP) is a plasticizer used to impart flexibility or stability in a variety of products including polyvinyl chloride, cable coatings, artificial leather, and footwear. Previous studies have examined the impact of DiNP on gut integrity and the colonic immune microenvironment, but this study further expands the research by examining whether DiNP exposure alters the colonic microbiota and various immune markers. Previous studies have also revealed that environmental microbes degrade various phthalates, but no studies have examined whether anaerobic gut bacteria can degrade DiNP.
View Article and Find Full Text PDF