Molecular clocks and Cambrian-derived metazoans strongly suggest a Neoproterozoic origin of many animal clades. However, fossil bilaterians are rare in the Ediacaran, and no definitive ecdysozoan body fossils are known from the Precambrian. Notably, the base of the Cambrian is characterized by an abundance of trace fossils attributed to priapulid worms, suggesting that major divisions among ecdysozoan groups occurred prior to this time.
View Article and Find Full Text PDFFossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity.
View Article and Find Full Text PDFThe tubular morphogroup is a common component of Earth's first complex, multicellular communities-the Ediacaran biota-and offers valuable insight into biological traits that are fundamental to animal life because they have intriguing links to metazoan phyla and are highly abundant in Ediacaran ecosystems. Biomineral tubes (e.g.
View Article and Find Full Text PDFThe Ediacara Biota-the oldest communities of complex, macroscopic fossils-consists of three temporally distinct assemblages: the Avalon (ca. 575-560 Ma), White Sea (ca. 560-550 Ma), and Nama (ca.
View Article and Find Full Text PDFConstraining patterns of growth using directly observable and quantifiable characteristics can reveal a wealth of information regarding the biology of the Ediacara Biota - the oldest macroscopic, complex community forming organisms in the fossil record. However, these rely on individuals captured at an instant in time at various growth stages, and so different interpretations can be derived from the same material. Here we leverage newly discovered and well-preserved Sprigg 1947 from South Australia, combined with hundreds of previously described specimens, to test competing hypotheses for the location of module addition.
View Article and Find Full Text PDFThe Ediacara Biota preserves the oldest fossil evidence of abundant, complex metazoans. Despite their significance, assigning individual taxa to specific phylogenetic groups has proved problematic. To better understand these forms, we identify developmentally controlled characters in representative taxa from the Ediacaran White Sea assemblage and compare them with the regulatory tools underlying similar traits in modern organisms.
View Article and Find Full Text PDFThe Precambrian Ediacara Biota-Earth's earliest fossil record of communities of macroscopic, multicellular organisms-provides critical insights into the emergence of complex life on our planet. Excavation and reconstruction of nearly 300 m of fossiliferous bedding planes in the Ediacara Member of the Rawnsley Quartzite, at the National Heritage Ediacara fossil site Nilpena in South Australia, have permitted detailed study of the sedimentology, taphonomy and palaeoecology of Ediacara fossil assemblages. Characterization of Ediacara macrofossils and textured organic surfaces at the scale of facies, bedding planes and individual specimens has yielded unprecedented insight into the manner in which the palaeoenvironmental settings inhabited by Ediacara communities-particularly hydrodynamic conditions-influenced the aut- and synecology of Ediacara organisms, as well as the morphology and assemblage composition of Ediacara fossils.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Analysis of modern animals and Ediacaran trace fossils predicts that the oldest bilaterians were simple and small. Such organisms would be difficult to recognize in the fossil record, but should have been part of the Ediacara Biota, the earliest preserved macroscopic, complex animal communities. Here, we describe gen.
View Article and Find Full Text PDFMobility represents a key innovation in the evolution of complex animal life. The ability to move allows for the exploration of new food sources, escapes from unfavorable environmental conditions, enhanced ability to exchange genetic material, and is one of the major reasons for the diversity and success of animal life today. The oldest widely accepted trace fossils of animal mobility are found in Ediacaran-aged rocks (635-539 Ma).
View Article and Find Full Text PDFPredation is one of the most fundamental ecological and evolutionary drivers in modern and ancient ecosystems. Here, we report the discovery of evidence of the oldest scavenging of shallowly buried bodies of iconic soft-bodied members of the Ediacara Biota by cryptic seafloor mat-burrowing animals that produced the furrow and levee trace fossil, Helminthoidichnites isp. These mat-burrowers were probably omnivorous, stem-group bilaterians that largely grazed on microbial mats but when following mats under thin sands, they actively scavenged buried Dickinsonia, Aspidella, Funisia and other elements of the Ediacara Biota.
View Article and Find Full Text PDFAnimal life on Earth is generally accepted to have risen during a period of increasingly well-oxygenated conditions, but direct evidence for that relationship has previously eluded scientists. This gap reflects both the enigmatic nature of the early animal fossil record and the coarse temporal resolution of Precambrian environmental change. Here, we combine paleontological data from the Ediacara Biota, the earliest fossil animals, with geochemical evidence for fluctuating redox conditions.
View Article and Find Full Text PDFThe history of life on Earth progressed in parallel with the evolving oxygen state of the atmosphere and oceans, but the details of that relationship remain poorly known and debated. There is, however, general agreement that the first appreciable and persistent accumulation of oxygen in the oceans and atmosphere occurred around 2.3 to 2.
View Article and Find Full Text PDFThe end-Devonian Hangenberg Crisis constituted one of the greatest ecological and environmental perturbations of the Paleozoic Era. To date, however, it has been difficult to precisely constrain the occurrence of the Hangenberg Crisis in the Appalachian Basin of the United States and thus to directly assess the effects of this crisis on marine microbial communities and paleoenvironmental conditions. Here, we integrate organic and inorganic chemostratigraphic records compiled from two discrete outcrop locations to characterize the onset and paleoenvironmental transitions associated with the Hangenberg Crisis within the Cleveland Shale member of the Ohio Shale.
View Article and Find Full Text PDFThe Ediacara Biota, Earth's earliest communities of complex, macroscopic, multicellular organisms, appeared during the late Ediacaran Period, just prior to the Cambrian Explosion. Ediacara fossil assemblages consist of exceptionally preserved soft-bodied forms of enigmatic morphology and affinity which nonetheless represent a critical stepping-stone in the evolution of complex animal ecosystems. The Ediacara Biota has historically been divided into three successive Assemblages-the Avalon, the White Sea, and the Nama.
View Article and Find Full Text PDFThe Ediacara Biota represents the oldest fossil evidence for the appearance of animals but linking these taxa to specific clades has proved challenging. Dickinsonia is an abundant, apparently bilaterally symmetrical Ediacara fossil with uncertain affinities. We identified and measured key morphological features of over 900 specimens of Dickinsonia costata from the Ediacara Member, South Australia to characterize patterns in growth and morphology.
View Article and Find Full Text PDFDiverse interpretations of Ediacaran organisms arise not only from their enigmatic body plans, but also from confusion surrounding the sedimentary environments they inhabited and the processes responsible for their preservation. Excavation of Ediacaran bedding surfaces of the Rawnsley Quartzite in South Australia has provided the opportunity to study the community structure of the Ediacara biota, as well as the autecology of individual organisms. Analysis of two bedding surfaces preserving large numbers of Parvancorina illustrates that individuals display a preferred, unidirectional orientation aligned with current, as indicated by the identified current proxies: tool marks, overfolded edges of Dickinsonia, felled fronds and drag structures generated by uprooted frond holdfasts.
View Article and Find Full Text PDFPatterns of origination and evolution of early complex life on this planet are largely interpreted from the fossils of the Precambrian soft-bodied Ediacara Biota. These fossils occur globally and represent a diverse suite of organisms living in marine environments. Although these exceptionally preserved fossil assemblages are typically difficult to reconcile with modern phyla, examination of the morphology, ecology, and taphonomy of these taxa provides keys to their relationships with modern taxa.
View Article and Find Full Text PDFThe most abundant taxon of the Neoproterozoic soft-bodied biota near Ediacara, South Australia, occurs as clusters of similarly sized individuals, which suggests synchronous aggregate growth by spatfall. Tubes of Funisia dorothea gen. et sp.
View Article and Find Full Text PDFThere was a major diversification known as the Ordovician Radiation, in the period immediately following the Cambrian. This event is unique in taxonomic, ecologic and biogeographic aspects.While all of the phyla but one were established during the Cambrian explosion, taxonomic increases during the Ordovician were manifest at lower taxonomic levels although ordinal level diversity doubled.
View Article and Find Full Text PDFThe trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at approximately equal 555 million years ago. The preservational potential of traces made close to the sediment-water interface is crucial to detecting early benthic activity.
View Article and Find Full Text PDF