Finite element (FE) modeling of rough surfaces is becoming increasingly common. However, the quality of the assumptions being made in these models, and thus the quality of the models themselves, is often unclear. Decisions about the geometry of the surface to be modeled, including the size of the surface to be modeled, the lateral resolution of the measured surface data to be used, and the formulation of the probabilistic surface to be used, can have a significant effect on a model's behavior.
View Article and Find Full Text PDFThis work discusses some of the benefits, techniques, challenges, and considerations associated with the incorporation of measured surfaces in finite element (FE) models including how much surface data to measure and import into the model, the shape of the surface geometry to create, the presence and effect of surface layers and impurities, the required mesh density for rough surfaces, the nature of the element formulations and material properties at small length scales, the differences between measurement and FE coordinate systems, the limitations and idealizations of the FE method, issues associated with boundary conditions and their ability to impose or prevent conformal contact, and issues associated with the size of the pinball region and the contact stiffness relative to the nature of the surface. It also describes some current and future research directions that can be used to validate and expand existing techniques and to improve our understanding of surface phenomena.
View Article and Find Full Text PDF