Sea spray aerosol (SSA) is a widely recognized important source of ice-nucleating particles (INPs) in the atmosphere. However, composition-specific identification, nucleation processes, and ice nucleation rates of SSA-INPs have not been well constrained. Microspectroscopic characterization of ambient and laboratory-generated SSA confirms that water-borne exudates from planktonic microorganisms composed of a mixture of proteinaceous and polysaccharidic compounds act as ice-nucleating agents (INAs).
View Article and Find Full Text PDFEnvironmental implications of climate change are complex and exhibit regional variations both within and between the polar regions. The increase of solar UV radiation flux over Antarctica due to stratospheric ozone depletion creates the optimal conditions for photochemical reactions on the snow. Modeling, laboratory, and indirect field studies suggest that snowpack process release gases to the atmosphere that can react on sea salt particles in remote regions such as Antarctica, modifying aerosol composition and physical properties of aerosols.
View Article and Find Full Text PDFAirborne particles are very dynamic and highly reactive components of the Earth's atmosphere. Their high surface area and water content provide a unique reaction environment for multiphase chemistry that continually modifies particle composition and properties that consequently impact air quality as well as concentrations of gas-phase species. By absorbing and scattering solar and terrestrial radiation, particles directly influence the planet's radiative balance.
View Article and Find Full Text PDFIn the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors.
View Article and Find Full Text PDFEnvironmental transmission electron microscopy was employed to probe transformations in the size, morphology, and composition of individual atmospheric particles as a function of temperature. Two different heating devices were used and calibrated in this work: a furnace heater and a Micro Electro Mechanical System heater. The temperature calibration used sublimation temperatures of NaCl, glucose, and ammonium sulfate particles, and the melting temperature of tin.
View Article and Find Full Text PDFAnthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state.
View Article and Find Full Text PDFHeterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood, partially due to the lack of experimental methods capable of obtaining in situ microscopic details of ice formation over nucleating substrates or particles. We present microscopic observations of ice nucleation events on kaolinite particles at the nanoscale and demonstrate the capability of direct tracking and micro-spectroscopic characterization of individual ice nucleating particles (INPs) in an authentic atmospheric sample.
View Article and Find Full Text PDFThe energy flows in Earth's natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations.
View Article and Find Full Text PDFEnviron Sci Technol
November 2016
Airborne biological particles, such as fungal spores and pollen, are ubiquitous in the Earth's atmosphere and may influence the atmospheric environment and climate, impacting air quality, cloud formation, and the Earth's radiation budget. The atmospheric transformations of airborne biological spores at elevated relative humidity remain poorly understood and their climatic role is uncertain. Using an environmental scanning electron microscope (ESEM), we observed rupturing of Amazonian fungal spores and subsequent release of submicrometer size fragments after exposure to high humidity.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
June 2016
This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces.
View Article and Find Full Text PDFNano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. Here, we present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm(2)-scale areas. Chemically modified block copolymer thin films featuring alternating charged and neutral domains are used as patterned substrates for electrostatic self-assembly.
View Article and Find Full Text PDFQuantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies.
View Article and Find Full Text PDFCerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce(3+)/Ce(4+) ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs.
View Article and Find Full Text PDFAtmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission X-ray microscopy (STXM) to investigate the LLPS of micrometer-sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), α, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied.
View Article and Find Full Text PDFConstituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semisolid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary microspectroscopic analyses.
View Article and Find Full Text PDFComplementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity.
View Article and Find Full Text PDFCharge carrier dynamics in Co3O4 thin films are observed using high harmonic generation transient absorption spectroscopy at the Co M2,3 edge. Results reveal that photoexcited Co3O4 decays to the ground state in 600 ± 40 ps in liquid methanol compared to 1.9 ± 0.
View Article and Find Full Text PDFChem Commun (Camb)
September 2014
Spectroscopic evidence for an enhanced binding of Nitric Oxide (NO) to metal centers with lower oxidation states (open Cu(1+) sites) in Cu3(btc)2 (HKUST-1) is presented. The Cu(1+) sites created by thermal treatment or X-ray exposure exhibit a preferential adsorption of NO compared to H2O. This phenomenon demonstrates the potential use of MOFs with lower oxidation state metal centers for selective gas separation.
View Article and Find Full Text PDFA new technique of high-resolution micro-Raman thermometry using anatase TiO2 microparticles (0.5-3 μm) is presented. These very high spatial resolution measurements (280 nm) reveal temperature gradients even within individual microparticles.
View Article and Find Full Text PDFWe have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor.
View Article and Find Full Text PDFThe fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest.
View Article and Find Full Text PDFWe have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicrometer particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278 to 320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and noncarbonaceous elements in particles of mixed composition.
View Article and Find Full Text PDFThe modern chemical industry uses heterogeneous catalysts in almost every production process. They commonly consist of nanometre-size active components (typically metals or metal oxides) dispersed on a high-surface-area solid support, with performance depending on the catalysts' nanometre-size features and on interactions involving the active components, the support and the reactant and product molecules. To gain insight into the mechanisms of heterogeneous catalysts, which could guide the design of improved or novel catalysts, it is thus necessary to have a detailed characterization of the physicochemical composition of heterogeneous catalysts in their working state at the nanometre scale.
View Article and Find Full Text PDFRecent ice core measurements show lead concentrations increasing since 1970, suggesting new nonautomobile-related sources of Pb are becoming important worldwide (1). Developing a full understanding of the major sources of Pb and other metals is critical to controlling these emissions. During the March, 2006 MILAGRO campaign, single particle measurements in Mexico City revealed the frequent appearance of particles internally mixed with Zn, Pb, Cl, and P.
View Article and Find Full Text PDFCarbonaceous particles originating from biomass burning can account for a large fraction of organic aerosols in a local environment. Presently, their composition, physical and chemical properties, as well as their environmental effects are largely unknown. Tar balls, a distinct type of highly spherical carbonaceous biomass burn particles, have been observed in a number of field campaigns.
View Article and Find Full Text PDF