Publications by authors named "Mary Jane Viar"

Since antizyme (AZ) is known to inhibit cell proliferation and to increase apoptosis, the question arises as to whether these effects occur independently of polyamines. Intestinal epithelial cells (IEC-6) were grown in control medium and medium containing 5 mM difluoromethylornithine (DFMO) to inhibit ODC, DFMO + 5 µM spermidine (SPD), DFMO + 5 µM spermine (SPM), or DFMO + 10 µM putrescine (PUT) for 4 days and various parameters of growth were measured along with AZ levels. Cell counts were significantly decreased and mean doubling times were significantly increased by DFMO.

View Article and Find Full Text PDF

Although intracellular polyamine levels are highly regulated, it is unclear whether intracellular putrescine (PUT), spermidine (SPD), or spermine (SPM) levels act as a sensor to regulate their synthesis or uptake. Polyamines have been shown to induce AZ1 expression through a unique +1 frameshifting mechanism. However, under physiological conditions which particular polyamine induces AZ1, and thereby ODC activity, is unknown due to their inter-conversion.

View Article and Find Full Text PDF

In a glucose-salt solution (Earle's balanced salt solution), asparagine (Asn) stimulates ornithine decarboxylase (ODC) activity in a dose-dependent manner, and the addition of epidermal growth factor (EGF) potentiates the effect of Asn. However, EGF alone fails to activate ODC. Thus, the mechanism by which Asn activates ODC is important for understanding the regulation of ODC activity.

View Article and Find Full Text PDF

Our group has previously shown that polyamine depletion delays apoptosis in rat intestinal epithelial (IEC-6) cells (Ray RM, Viar MJ, Yuan Q, and Johnson LR, Am J Physiol Cell Physiol 278: C480-C489, 2000). Here, we demonstrate that polyamine depletion inhibits gamma-irradiation-induced apoptosis in vitro and in vivo. Pretreatment of IEC-6 cells with 5 mM alpha-difluoromethylornithine (DFMO) for 4 days significantly reduced radiation-induced caspase-3 activity and DNA fragmentation.

View Article and Find Full Text PDF

Intracellular polyamine homeostasis is important for the regulation of cell proliferation and apoptosis and is necessary for the balanced growth of cells and tissues. Polyamines have been shown to play a role in the regulation of apoptosis in many cell types, including IEC-6 cells, but the mechanism is not clear. In this study, we analyzed the mechanism by which polyamines regulate the process of apoptosis in response to tumor necrosis factor-alpha (TNF-alpha).

View Article and Find Full Text PDF

Purpose: To determine whether polyamines are present in corneal cells, whether corneal cell polyamines can be depleted by blocking the first rate-limiting enzyme in the polyamine synthesis pathway, ornithine decarboxylase (ODC), and whether polyamines are required for proliferation in all three corneal cell types.

Methods: Cultured corneal epithelial cells, keratocytes, and endothelial cells were exposed to the specific ODC blocker difluoromethylornithine (DFMO), and ODC activity, intracellular polyamine concentrations, and cell proliferation were measured.

Results: DFMO blocked ODC activity in a dose- and time-dependent manner in all three cell types.

View Article and Find Full Text PDF

The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA.

View Article and Find Full Text PDF

Background & Aims: Inhibition of RhoA activity and depletion of polyamines inhibits cell migration and causes changes in the actin cytoskeleton. In this article we have examined the effect of polyamine depletion on RhoA and evaluated these effects on cell migration.

Methods: Polyamines were depleted in intestinal epithelial cell (IEC)-6 cells by incubating them for 4 days with 5 mmol/L alpha-difluoromethylornithine (DFMO), which inhibits ornithine decarboxylase, the first rate-limiting enzyme in the synthesis of polyamines.

View Article and Find Full Text PDF

Purpose: Migration of retinal pigment epithelial (RPE) cells can be triggered by disruption of the RPE monolayer or injury to the neural retina. Migrating cells may re-establish a confluent monolayer, or they may invade the neural retina and disrupt visual function. The purpose of this study was to examine the role of endogenous polyamines in mechanisms of RPE migration.

View Article and Find Full Text PDF