Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects most of the population. The complex 236 kbp genome encodes more than 170 open reading frames, whose expression is temporally regulated by both viral transcriptional regulators and cellular factors that control chromatin and transcription. Here, we have used state of the art genomic technologies to investigate the viral transcriptome in conjunction with 2 key transcriptional regulators: Pol II and H3K27Ac.
View Article and Find Full Text PDFHCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency.
View Article and Find Full Text PDFTransplantation tolerance is achieved when recipients are unresponsive to donor alloantigen yet mobilize against third-party antigens, including virus. After transplantation, cytomegalovirus (CMV) reactivation in latently-infected transplants reduces allograft viability. To determine if pre-tolerized recipients are resistant to viral dissemination in this setting, we transfused chemically-fixed donor splenocytes (1-ethyl-3- (3'-dimethyl-aminopropyl)-carbo-diimide (ECDI)-treated splenocytes (ECDIsp)) to induce donor antigen tolerance without immunosuppression.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
CMV is an ancient herpesvirus that has co-evolved with its host over millions of years. The 236 kbp genome encodes at least 165 genes, four non-coding RNAs and 14 miRNAs. Of the protein-coding genes, 43-44 are core replication genes common to all herpesviruses, while ~30 are unique to betaherpesviruses.
View Article and Find Full Text PDFCytomegalovirus (CMV) is a β-herpesvirus that establishes lifelong latency in infected hosts. Following transplantation of a latently infected organ, reactivation can occur and consists of a spectrum of clinically apparent syndromes from mild symptoms to tissue-invasive, resulting in both direct and indirect sequelae. Before the advent of effective antiviral agents, the primary treatment was reduction in immunosuppression (IS).
View Article and Find Full Text PDFReactivation of latent cytomegalovirus remains an important complication after transplant. Although immunosuppression (IS) has been implicated as a primary cause, we have previously shown that the implantation response of a kidney allograft can lead to early transcriptional activation of latent murine cytomegalovirus (MCMV) genes in an immune-competent host and to MCMV reactivation and dissemination to other organs in a genetically immune-deficient recipient. We now describe a model that allows us to separately analyze the impact of the implantation effect vs that of a clinically relevant IS regimen.
View Article and Find Full Text PDFWe used the Kasumi-3 model to study human cytomegalovirus (HCMV) latency and reactivation in myeloid progenitor cells. Kasumi-3 cells were infected with HCMV strain TB40/E-GFP, flow sorted for green fluorescent protein-positive (GFP) cells, and cultured for various times to monitor establishment of latency, as judged by repression of viral gene expression (RNA/DNA ratio) and loss of virus production. We found that, in the vast majority of cells, latency was established posttranscriptionally in the GFP infected cells: transcription was initially turned on and then turned off.
View Article and Find Full Text PDFIntern Med Rev (Wash D C)
March 2017
Myeloid cells are important cell types that carry human cytomegalovirus. Latent viral DNA is present in CD34+ progenitor cells and their derived monocytes. However, differentiation of latently infected monocytes to mature macrophages or dendritic cells causes reactivation of latent viruses.
View Article and Find Full Text PDFReactivation of latent human cytomegalovirus is a significant infectious complication of organ transplantation and current therapies target viral replication once reactivation of latent virus has already occurred. The specific molecular pathways that activate viral gene expression in response to transplantation are not well understood. Our studies aim to identify these factors, with the goal of developing novel therapies that prevent transcriptional reactivation in transplant recipients.
View Article and Find Full Text PDFCytomegalovirus (CMV) gene expression is repressed in latency due to heterochromatinization of viral genomes. In murine CMV (MCMV) latently infected mice, viral genomes are bound to histones with heterochromatic modifications, to enzymes that mediate these modifications, and to adaptor proteins that may recruit co-repressor complexes. Kinetic analyses of repressor binding show that these repressors are recruited at the earliest time of infection, suggesting that latency may be the default state.
View Article and Find Full Text PDFOur previous studies showed that establishment of murine cytomegalovirus (MCMV) latency in vivo is associated with repression of immediate-early gene expression, deacetylation of histones bound to the major immediate-early promoter (MIEP), changes in patterns of methylation of histones, and recruitment of cellular repressors of transcription to the MIEP. Here, we have quantitatively analyzed the kinetics of changes in viral RNA expression, DNA copy number, and recruitment of repressors and activators of transcription to viral promoters during the course of infection. Our results show that changes in viral gene expression correlate with changes in recruitment of RNA polymerase and acetylated histones to viral promoters.
View Article and Find Full Text PDFBackground: Increased levels of tumor necrosis factor (TNF) are a risk factor for allograft rejection. In vitro studies have shown that binding of TNF to its receptor activates signaling cascades that induce expression of many genes involved in inflammation. The role of intragraft TNF receptor (TNFR) signaling in activation of gene expression in allografts has not been studied.
View Article and Find Full Text PDFHuman cytomegalovirus (CMV) is a ubiquitous herpesvirus with the ability to establish a lifelong latent infection. The mechanism by which this occurs is not well understood. Regulation of, for example, immediate-early (IE) gene expression is thought to be a critical control point in transcriptional control of the switch between latency and reactivation.
View Article and Find Full Text PDFBackground: Reactivation of latent human cytomegalovirus (HCMV) infection is a significant risk factor for long term allograft dysfunction. The molecular pathways involved in reactivation of latent virus have not been identified. Previous studies suggested that tumor necrosis factor (TNF) -mediated activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-kappa B) leading to transcriptional reactivation of viral immediate early (ie) gene expression might be important in transplant-associated viral reactivation.
View Article and Find Full Text PDFWe have used a spleen explant model to investigate mechanisms of murine cytomegalovirus latency and reactivation. Induction of immediate-early (ie) gene expression occurs in explants after approximately 9 days in culture and virus reactivation follows induction of ie gene expression with kinetics similar to that of productive infection in vitro. This occurs independently of TNF receptor signalling.
View Article and Find Full Text PDFReactivation of latent human cytomegalovirus is of significant concern in immunocompromised transplant patients and is likely to occur through transcriptional activation of immediate early (ie) gene expression through mechanisms that are not well understood. TNF-mediated activation of NF-kappaB has been proposed to be one pathway leading to transcriptional activation of CMV ie gene expression. Using transgenic mice carrying a lacZ reporter gene under the control of the HCMV major ie promoter/enhancer (MIEP-lacZ mice) and MIEP-lacZ mice deficient in TNF receptor 1 and TNF receptor 2 (MIEP-lac Z TNFR DKO mice), we demonstrate that renal ischemia/reperfusion (I/R) injury activates the HCMV enhancer independently of TNF.
View Article and Find Full Text PDFBackground: Reactivation of CMV from latency results in serious morbidity and mortality in immunocompromised transplant recipients. The mechanism by which CMV reactivates from latency has not been well understood.
Objective: In this review we discuss three models for reactivation from latency and present evidence in favor of the model that reactivation is a multi-step process which is initiated by the allogeneic response to the transplanted organ.