Publications by authors named "Mary Guerinot"

Calcium (Ca) is an essential mineral nutrient and plays a crucial signaling role in all living organisms. Increasing Ca content in staple foods such as rice is vital for improving Ca nutrition of humans. Here we map a quantitative trait locus that controls Ca concentration in rice grains and identify the causal gene as GCSC1 (Grain Ca and Sr Concentrations 1), which encodes a chloroplast vesicle localized homo-oligomeric protein.

View Article and Find Full Text PDF

The movement of metals through the environment links together a wide range of scientific fields: from earth sciences and geology as weathering releases minerals; to environmental sciences as metals are mobilized and transformed, cycling through soil and water; to biology as living things take up metals from their surroundings. Studies of these fundamental processes all require quantitative analysis of metal concentrations, locations, and chemical states. Synchrotron X-ray tools can address these requirements with high sensitivity, high spatial resolution, and minimal sample preparation.

View Article and Find Full Text PDF

Iron (Fe) is an essential micronutrient whose availability is limiting in many soils. During Fe deficiency, plants alter the expression of many genes to increase Fe uptake, distribution, and utilization. In a genetic screen for suppressors of Fe sensitivity in the E3 ligase mutant , we isolated an allele of the bHLH transcription factor (TF) , We identified a striking leaf bleaching phenotype in mutants that was suppressed by limiting light intensity, indicating that ILR3 is required for phototolerance during Fe deficiency.

View Article and Find Full Text PDF

Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles.

View Article and Find Full Text PDF

Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa.

View Article and Find Full Text PDF

Zinc (Zn) is a key micronutrient for plants and animals, and understanding Zn homeostasis in plants can improve both agriculture and human health. While root Zn transporters in plant model species have been characterized in detail, comparatively little is known about shoot processes controlling Zn concentrations and spatial distribution. Previous work showed that Zn hyperaccumulator species such as Arabidopsis halleri accumulate Zn and other metals in leaf trichomes.

View Article and Find Full Text PDF

Rice provides more than one fifth of daily calories for half of the world's human population, and is a major dietary source of both essential mineral nutrients and toxic elements. Rice grains are generally poor in some essential nutrients but may contain unsafe levels of some toxic elements under certain conditions. Identification of quantitative trait loci (QTLs) controlling the concentrations of mineral nutrients and toxic trace metals (the ionome) in rice will facilitate development of nutritionally improved rice varieties.

View Article and Find Full Text PDF

Iron (Fe) is one of the essential micronutrients required by both plants and animals. In humans, Fe deficiency causes anemia, the most prevalent nutritional disorder. Most people rely on plant-based foods as their major Fe source, but plants are a poor source of dietary Fe.

View Article and Find Full Text PDF

Manganese (Mn) is an essential trace element for plants and commonly contributes to human health; however, the understanding of the genes controlling natural variation in Mn in crop plants is limited. Here, the integration of two of genome-wide association study approaches was used to increase the identification of valuable quantitative trait loci (QTL) and candidate genes responsible for the concentration of grain Mn across 389 diverse rice cultivars grown in Arkansas and Texas, USA, in multiple years. Single-trait analysis was initially performed using three different SNP datasets.

View Article and Find Full Text PDF

Tiller number is one of the most important agronomic traits that determine rice (Oryza sativa) yield. Active growth of tiller bud (TB) requires high amount of mineral nutrients; however, the mechanism underlying the distribution of mineral nutrients to TB with low transpiration is unknown. Here, we found that the distribution of Zn to TB is mediated by OsZIP4, one of the ZIP (ZRT, IRT-like protein) family members.

View Article and Find Full Text PDF

High Arsenic Concentration 1 (HAC1), an Arabidopsis thaliana arsenate reductase, plays a key role in arsenate [As(V)] tolerance. Through conversion of As(V) to arsenite [As(III)], HAC1 enables As(III) export from roots, and restricts translocation of As(V) to shoots. To probe the ability of different root tissues to detoxify As(III) produced by HAC1, we generated A.

View Article and Find Full Text PDF

Iron is an essential nutrient for plants, but excess iron is toxic due to its catalytic role in the formation of hydroxyl radicals. Thus, iron uptake is highly regulated and induced only under iron deficiency. The mechanisms of iron uptake in roots are well characterized, but less is known about how plants perceive iron deficiency.

View Article and Find Full Text PDF

Molybdenum (Mo) is an essential micronutrient for most living organisms, including humans. Cereals such as rice (Oryza sativa) are the major dietary source of Mo. However, little is known about the genetic basis of the variation in Mo content in rice grain.

View Article and Find Full Text PDF

The diet is emerging as the dominant source of arsenic exposure for most of the U.S. population.

View Article and Find Full Text PDF

Iron (Fe) and zinc (Zn) are essential micronutrients required for proper development in both humans and plants. Rice ( L.) grains are the staple food for nearly half of the world's population, but a poor source of metals such as Fe and Zn.

View Article and Find Full Text PDF

Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds.

View Article and Find Full Text PDF

Iron (Fe) is required for plant health, but it can also be toxic when present in excess. Therefore, Fe levels must be tightly controlled. The Arabidopsis thaliana E3 ligase BRUTUS (BTS) is involved in the negative regulation of the Fe deficiency response and we show here that the two A.

View Article and Find Full Text PDF

This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems.

View Article and Find Full Text PDF

Rice is a major source of calories and mineral nutrients for over half the world's human population. However, little is known in rice about the genetic basis of variation in accumulation of copper (Cu), an essential but potentially toxic nutrient. Here we identify OsHMA4 as the likely causal gene of a quantitative trait locus controlling Cu accumulation in rice grain.

View Article and Find Full Text PDF

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination.

View Article and Find Full Text PDF

This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards.

View Article and Find Full Text PDF

Iron is essential for both plant growth and human health and nutrition. Knowledge of the signaling mechanisms that communicate iron demand from shoots to roots to regulate iron uptake as well as the transport systems mediating iron partitioning into edible plant tissues is critical for the development of crop biofortification strategies. Here, we report that OPT3, previously classified as an oligopeptide transporter, is a plasma membrane transporter capable of transporting transition ions in vitro.

View Article and Find Full Text PDF

Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures.

View Article and Find Full Text PDF