PKN3 is an AGC-family protein kinase implicated in growth of metastatic prostate cancer cells with phosphoinositide 3-kinase pathway deregulation. The molecular mechanism, however, by which PKN3 contributes to malignant growth and tumorigenesis is not well understood. Using orthotopic mouse tumor models, we now show that inducible knockdown of PKN3 protein not only blocks metastasis, but also impairs primary prostate and breast tumor growth.
View Article and Find Full Text PDFMammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway.
View Article and Find Full Text PDFThe series of 4-(benzylaminomethylene)isoquinoline-1,3-(2H,4H)-dione and 4-[(pyridylmethyl)aminomethylene]isoquinoline-1,3-(2H,4H)-dione derivatives reported here represents a novel class of potential antitumor agents, which potently and selectively inhibit CDK4 over CDK2 and CDK1. In the benzylamino headpiece, a 3-OH substituent is required on the phenyl ring for CDK4 inhibitory activity, which is further enhanced when an iodo, aryl, heteroaryl, t-butyl, or cyclopentyl substituent is introduced at the C-6 position of the isoquinoline-1,3-dione core. To circumvent the metabolic liability associated with the phenolic OH group on the 4-substituted 3-OH phenyl headpiece, we take two approaches: first, introduce a nitrogen o- or p- to the 3-OH group in the phenyl ring; second, replace the phenyl headpiece with N-substituted 2-pyridones.
View Article and Find Full Text PDFThe cyclin-dependent kinases (CDKs), as complexes with their respective partners, the cyclins, are critical regulators of cell cycle progression. Because aberrant regulations of CDK4/cyclin D1 lead to uncontrolled cell proliferation, a hallmark of cancer, small-molecule inhibitors of CDK4/cyclin D1 are attractive as prospective antitumor agents. The series of 4-(phenylaminomethylene)isoquinoline-1,3(2H,4H)-dione derivatives reported here represents a novel class of potent inhibitors that selectively inhibit CDK4 over CDK2 and CDK1 activities.
View Article and Find Full Text PDFWe have examined the role of cyclin D1 and cyclin-dependent kinase-4 (CDK4) in the cell cycle progression and proliferation of MCF-7 breast cancer cells. Forced expression of cyclin D1 using a tetracycline-regulated expression system, and suppression of endogenous cyclin D1 and CDK4 using small interfering RNA (siRNA) were used to validate this protein complex as a drug target in cancer drug discovery. Overexpression of cyclin D1 increased both phosphorylation of the retinoblastoma gene product (RB) and passage through the G1-S phase transition, resulting in increased proliferation of cells.
View Article and Find Full Text PDF