The regenerative potential of bone marrow-derived endothelial progenitor cells (EPCs) has been adapted for the treatment of myocardial and limb ischemia via ex vivo expansion. We sought to enhance EPC function by the efficient genetic modification of EPCs in a rat model of myocardial infarction. Peripheral blood EPCs were expanded and transduced, using adeno-associated virus (AAV).
View Article and Find Full Text PDFInsulin-like growth factor-1 (IGF-1) has been found to exert favorable effects on angiogenesis in prior animal studies. This study explored the long-term effect of IGF-1 on angiogenesis using microSPECT-CT in infarcted rat hearts after delivering human IGF-1 gene by adeno-associated virus (AAV). Myocardial infarction (MI) was induced in Sprague-Dawley rats by ligation of the proximal anterior coronary artery and a total of 10(11) AAV-CMV-lacZ (control) or IGF-1 vectors were injected around the peri-infarct area.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV)-based gene therapy represents a promising approach for the treatment of heart diseases. It has been shown that growth hormone (GH) exerts a favorable effect on cardiovascular function in clinical and animal studies. This study explores a chronic stage after myocardial infarction and the potential therapeutic effects of delivering a human GH gene by rAAV following coronary artery ligation in Sprague-Dawley rats.
View Article and Find Full Text PDFBackground: We compared the therapeutic potential of purified mobilized human CD34+ cells with that of mobilized total mononuclear cells (tMNCs) for the preservation/recovery of myocardial tissue integrity and function after myocardial infarction (MI).
Methods And Results: CD34+ cells were purified from peripheral blood tMNCs of healthy volunteers by magnetic cell sorting after a 5-day administration of granulocyte colony-stimulating factor. Phosphate-buffered saline (PBS), 5x10(5) CD34+ cells/kg, 5x10(5) tMNCs/kg (low-dose MNCs [loMNCs]), or a higher dose of tMNCs (hiMNCs) containing 5x10(5) CD34+ cells/kg was transplanted intramyocardially 10 minutes after the induction of MI in athymic nude rats.
Nat Clin Pract Cardiovasc Med
March 2006
Previous studies have shown that local angiogenic gene therapy acts, in part, by recruiting endothelial progenitor cells (EPCs) to ischemic tissue. Recent data indicate that patients with the most severe vascular disease may have insufficient or deficient EPCs and the poorest response to angiogenic therapy. Accordingly, we hypothesized that combining human CD34(+) cell implantation with local vascular endothelial growth factor 2 (phVEGF2) gene therapy might overcome these deficiencies.
View Article and Find Full Text PDFThe cell surface receptor alpha4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of alpha4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of alpha4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs).
View Article and Find Full Text PDFTNF-alpha modulates EC proliferation and thereby plays a central role in new blood vessel formation in physiologic and pathologic circumstances. TNF-alpha is known to downregulate cyclin A, a key cell cycle regulatory protein, but little else is known about how TNF-alpha modulates EC cell cycle and angiogenesis. Using primary ECs, we show that ezrin, previously considered to act primarily as a cytoskeletal protein and in cytoplasmic signaling, is a TNF-alpha-induced transcriptional repressor.
View Article and Find Full Text PDFBackground: We performed a series of investigations to test the hypothesis that combining angiogenic gene therapy and cytokine (CK)-induced endothelial progenitor cell mobilization would be superior to either strategy alone for treatment of chronic myocardial ischemia.
Methods And Results: A swine model of chronic myocardial ischemia and a murine model of acute myocardial infarction were used in this study. In both models, animals were randomly assigned to 1 of 4 treatment groups: Combo group, intramyocardial vascular endothelial growth factor (VEGF)-2 gene transfer plus subcutaneous injection of CKs; VEGF-2, VEGF-2 gene transfer plus saline subcutaneously injected; CK, empty vector transfer plus CKs; and control, empty vector plus subcutaneous saline.