Publications by authors named "Mary Farina"

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (R ), net ecosystem CO exchange (NEE; R  - GPP), and terrestrial methane (CH ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites.

View Article and Find Full Text PDF

Long-term atmospheric CO concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength.

View Article and Find Full Text PDF

Constraining the climate crisis requires urgent action to reduce anthropogenic emissions while simultaneously removing carbon dioxide from the atmosphere. Improved information about the maximum magnitude and spatial distribution of opportunities for additional land-based removals of CO2 is needed to guide on-the-ground decision-making about where to implement climate change mitigation strategies. Here, we present a globally consistent spatial dataset (approximately 500-m resolution) of current, potential, and unrealized potential carbon storage in woody plant biomass and soil organic matter.

View Article and Find Full Text PDF
Article Synopsis
  • Arctic warming is impacting snow cover and soil hydrology, which in turn affects carbon sequestration in tundra ecosystems.
  • A study using 119 site-years of data revealed that earlier snowmelt boosts carbon sequestration and plant productivity in early summer (June-July) but reduces them in August.
  • Despite higher evapotranspiration leading to potential soil drying, earlier snowmelt did not significantly decrease soil moisture, suggesting that without continued carbon uptake in late summer, the benefits of a longer growing season may not be realized.
View Article and Find Full Text PDF

This work is focused on characterizing and understanding the aboveground biomass of Caatinga in a semiarid region in northeastern Brazil. The quantification of Caatinga biomass is limited by the small number of field plots, which are inadequate for addressing the biome's extreme heterogeneity. Satellite-derived biomass products can address spatial and temporal changes but they have not been validated for seasonally dry tropical forests.

View Article and Find Full Text PDF

While improved management of agricultural landscapes is promoted as a promising natural climate solution, available estimates of the mitigation potential are based on coarse assessments of both agricultural extent and aboveground carbon density. Here we combine 30 meter resolution global maps of aboveground woody carbon, tree cover, and cropland extent, as well as a 1 km resolution map of global pasture land, to estimate the current and potential carbon storage of trees in nonforested portions of agricultural lands. We find that global croplands currently store 3.

View Article and Find Full Text PDF

Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances-processes that occur without forest clearing but are increasingly important drivers of biomass loss.

View Article and Find Full Text PDF

Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-governmental organizations that signed the New York Declaration on Forests (NYDF). We assemble and refine a robust dataset to establish a 2001-2013 benchmark for average annual carbon emissions from gross tropical deforestation at 2.270 Gt CO2 yr(-1).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0akjrvtee9t8radqul79j9jnlea3g052): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once