The intricate regulation of gene expression is fundamental to the biological complexity of higher organisms, and is primarily governed by transcriptional and post-transcriptional mechanisms. The 3'-untranslated region (3'UTR) of mRNA is rich in cis-regulatory elements like G-quadruplexes (G4s), and plays a crucial role in post-transcriptional regulation. G4s have emerged as significant gene regulators, impacting mRNA stability, translation, and localization.
View Article and Find Full Text PDFMycobacterium tuberculosis is composed of a cumbersome signaling and protein network which partakes in bacterial survival and augments its pathogenesis. Mycobacterial PhoH2 (Mt-PhoH2) is a signaling element and a predictive phosphate starvation protein that works in an ATP-dependent manner. Here, we elaborated the characterization of Mt-PhoH2 through biophysical, biochemical, and computational methods.
View Article and Find Full Text PDFNuclear-retained long non-coding RNAs (lncRNAs) including MALAT1 have emerged as critical regulators of many molecular processes including transcription, alternative splicing and chromatin organization. Here, we report the presence of three conserved and thermodynamically stable RNA G-quadruplexes (rG4s) located in the 3' region of MALAT1. Using rG4 domain-specific RNA pull-down followed by mass spectrometry and RNA immunoprecipitation, we demonstrated that the MALAT1 rG4 structures are specifically bound by two nucleolar proteins, Nucleolin (NCL) and Nucleophosmin (NPM).
View Article and Find Full Text PDFNucleolin (NCL) is a well-characterized nucleic acid-binding protein; it binds to various canonical and noncanonical structures including single- and double-stranded DNA and RNA, hairpin, loops, and G-quadruplex structures. G-quadruplex structures are majorly formed in promoter, telomeric, and untranslated regions of the genome and affect the process of replication, transcription, and translation. One of the widely studied G-quadruplex-forming regions are telomeres, as these are sites for the recruitment for various proteins providing stability or having an effect on the telomerase activity.
View Article and Find Full Text PDFMALAT1, an abundant lncRNA specifically localized to nuclear speckles, regulates alternative-splicing (AS). The molecular basis of its role in AS remains poorly understood. Here, we report three conserved, thermodynamically stable, parallel RNA-G-quadruplexes (rG4s) present in the 3' region of MALAT1 which regulates this function.
View Article and Find Full Text PDFMycobacterium tuberculosis (M. tuberculosis HRv) utilizes the signal recognition particle pathway (SRP pathway) system for secretion of various proteins from ribosomes to the extracellular surface which plays an important role in the machinery running inside the bacterium. This system comprises of three major components FtsY, FfH and 4.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2019
Albeit most studies demonstrate the inhibitory role of G-quadruplex in the 5' Untranslated Region (5' UTR), our previous report depicted its completely contrasting activating role in the 5' UTR of transforming growth factor β2 (TGFβ2) mRNA. Therefore, we screened the 5' UTR of TGFβ2 manually and identified a second putative G-quadruplex sequence. Our in vitro experiments encompassing CD and UV spectroscopy confirmed the ability of this sequence to form a G-quadruplex and in cellulo studies further indicated its activating role in modulation of TGFβ2 gene expression.
View Article and Find Full Text PDFThe intrinsically disordered HIV-1 Tat protein binds the viral RNA transactivation response structure (TAR), which recruits transcriptional cofactors, amplifying viral mRNA expression. Limited Tat transactivation correlates with HIV-1 latency. Unfortunately, Tat inhibitors are not clinically available.
View Article and Find Full Text PDFNoncoding RNAs are functional RNA molecules that get transcribed from DNA but are not translated into proteins; yet, they can regulate gene expression at transcriptional and post-transcriptional levels. Secondary structures present within these RNAs play a major role in determining their nature of function. In the case of miRNAs, the precursor miRNA have a hairpin stem loop structure which is required for Dicer recognition and further maturation.
View Article and Find Full Text PDFEAF (ELL Associated Factor) proteins interact with the transcription elongation factor, ELL (Eleven nineteen Lysine rich Leukemia) and enhance its ability to stimulate RNA polymerase II-mediated transcriptional elongation in vitro. Schizosaccharomyces pombe contains a single homolog of EAF (SpEAF), which is not essential for survival of S. pombe in contrast to its essential higher eukaryotic homologs.
View Article and Find Full Text PDFBy classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10-10) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions.
View Article and Find Full Text PDFSerine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT] unit and two molecules of [OASS]. However, it is not clear why [SAT] cannot engage all of its six high-affinity binding sites.
View Article and Find Full Text PDFIonic liquids (ILs) are salts with poor ionic coordination, resultantly remaining in liquid state below 100 °C and some may retain liquid state even at room temperature. ILs are known to provide a conducive environment for many biological enzymatic reactions, but their interaction with biomacromolecules are poorly understood. In the present study, we investigate the effect of various ionic liquids on DNA-small molecule interaction using calf thymus DNA (ctDNA)-ethidium bromide (EB) as a model system.
View Article and Find Full Text PDFFad35R from Mycobacterium tuberculosis binds to the promoter site of Fad35 operon and its DNA binding activities are reduced in the presence of tetracycline and palmitoyl-CoA. We resolved the crystal structure of Fad35R using single-wavelength anomalous diffraction method (SAD). Fad35R comprises canonical DNA binding domain (DBD) and ligand binding domain (LBD), but displays several distinct structural features.
View Article and Find Full Text PDFDug1p, a M20 family metallopeptidase and human orthologue of carnosinase, hydrolyzes Cys-Gly dipeptide, the last step of glutathione (GSH) degradation in Saccharomyces cerevisiae. Molecular bases of peptide recognition by Dug1p and other M20 family peptidases remain unclear in the absence of structural information about enzyme-peptide complexes. We report the crystal structure of Dug1p at 2.
View Article and Find Full Text PDFPhoP, the response regulator of the PhoP/PhoQ system, regulates Mg(2+) homeostasis in Salmonella typhimurium. Dimerization of PhoP on the DNA is necessary for its regulatory function, and PhoP regulates the expression of genes in a phosphorylation-dependent manner. Higher PhoP concentrations, however, can activate PhoP and substitute for phosphorylation-dependent gene regulation.
View Article and Find Full Text PDFChemical modifications of substrate peptides are often necessary to monitor the hydrolysis of small bioactive peptides. We developed an electrospray ionization mass spectrometry (ESI-MS) assay for studying substrate distributions in reaction mixtures and determined steady-state kinetic parameters, the Michaelis-Menten constant (K(m)), and catalytic turnover rate (V(max)/[E](t)) for three metallodipeptidases: two carnosinases (CN1 and CN2) from human and Dug1p from yeast. The turnover rate (V(max)/[E](t)) of CN1 and CN2 determined at pH 8.
View Article and Find Full Text PDFBackground: The importance of understanding the detailed mechanism of cysteine biosynthesis in bacteria is underscored by the fact that cysteine is the only sulfur donor for all cellular components containing reduced sulfur. O-acetylserine sulfhydrylase (OASS) catalyzes this crucial last step in the cysteine biosynthesis and has been recognized as an important gene for the survival and virulence of pathogenic bacteria. Structural and kinetic studies have contributed to the understanding of mechanistic aspects of OASS, but details of ligand recognition features of OASS are not available.
View Article and Find Full Text PDFDug1p is a recently identified novel dipeptidase and plays an important role in glutathione (GSH) degradation. To understand the mechanism of its substrate recognition and specificity towards Cys-Gly dipeptides, we characterized the solution properties of Dug1p and studied the thermodynamics of Dug1p-peptide interactions. In addition, we used homology modeling and ligand docking approaches to get structural insights into Dug1p-peptide interaction.
View Article and Find Full Text PDF