Publications by authors named "Mary Ecke"

Normal-sized cells of Dictyostelium build up a front-tail polarity when they respond to a gradient of chemoattractant. To challenge the polarity-generating system, cells are fused to study the chemotactic response of oversized cells that extend multiple fronts toward the source of attractant. An aspect that can be explored in these cells is the relationship of spontaneously generated actin waves to actin reorganization in response to chemoattractant.

View Article and Find Full Text PDF

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas.

View Article and Find Full Text PDF

Circular actin waves that propagate on the substrate-attached membrane of Dictyostelium cells separate two distinct membrane domains from each other: an inner territory rich in phosphatidyl-(3,4,5) trisphosphate (PIP3) and an external area decorated with the PIP3-degrading 3-phosphatase PTEN. During wave propagation, the inner territory increases at the expense of the external area. Beyond a size limit, the inner territory becomes unstable, breaking into an inner and an external domain.

View Article and Find Full Text PDF

Multinucleate cells of divide usually by unilateral cleavage furrows that ingress from the cell border. Along their path into the cell, they follow regions that are rich in myosin II and cortexillin and leave out the areas around the spindle poles that are populated with microtubule asters. In cells of a mutant that remain spread during mitosis we observed, as a rare event, cleavage by the expansion of a hole that is initiated in the middle of the cell area and has no connection with the cell's periphery.

View Article and Find Full Text PDF

Cell migration on an adhesive substrate surface comprises actin-based protrusion at the front and retraction of the tail in combination with coordinated adhesion to, and detachment from, the substrate. To study the effect of cell-to-substrate adhesion on the chemotactic response of Dictyostelium discoideum cells, we exposed the cells to patterned substrate surfaces consisting of adhesive and inert areas, and forced them by a gradient of chemoattractant to enter the border between the two areas. Wild-type as well as myosin II-deficient cells stop at the border of an adhesive area.

View Article and Find Full Text PDF

In multi-nucleate cells of Dictyostelium, cytokinesis is performed by unilateral cleavage furrows that ingress the large cells from their border. We use a septase (sepA)-null mutant with delayed cytokinesis to show that in anaphase a pattern is generated in the cell cortex of cortexillin and myosin II. In multi-nucleate cells, these proteins decorate the entire cell cortex except circular zones around the centrosomes.

View Article and Find Full Text PDF

Aberrant centrosome activities in mutants of result in anomalies of mitotic spindles that affect the reliability of chromosome segregation. Genetic instabilities caused by these deficiencies are tolerated in multinucleate cells, which can be produced by electric-pulse induced cell fusion as a source for aberrations in the mitotic apparatus of the mutant cells. Dual-color fluorescence labeling of the microtubule system and the chromosomes in live cells revealed the variability of spindle arrangements, of centrosome-nuclear interactions, and of chromosome segregation in the atypical mitoses observed.

View Article and Find Full Text PDF

Multinucleate cells can be produced in by electric pulse-induced fusion. In these cells, unilateral cleavage furrows are formed at spaces between areas that are controlled by aster microtubules. A peculiarity of unilateral cleavage furrows is their propensity to join laterally with other furrows into rings to form constrictions.

View Article and Find Full Text PDF

Dictyostelium cells are professional phagocytes that are capable of handling particles of variable shapes and sizes. Here we offer long bacteria that challenge the uptake mechanism to its limits and report on the responses of the phagocytes if they are unable to engulf the particle by closing the phagocytic cup. Reasons for failure may be a length of the particle much larger than the phagocyte's diameter, or competition with another phagocyte.

View Article and Find Full Text PDF

Circular actin waves separate two distinct areas on the substrate-attached cell surface from each other: an external area from an inner territory that is circumscribed by the wave. These areas differ in composition of actin-associated proteins and of phosphoinositides in the membrane. At the propagating wave, one area is converted into the other.

View Article and Find Full Text PDF

Plasma membrane and underlying actin network are connected to a functional unit that by non-linear interactions is capable of forming patterns. For instance, in cell motility and chemotaxis, cells polarize to form a protruding front and a retracting tail. Here we address dynamic patterns that are formed on a planar substrate surface and are therefore easily accessible to optical recording.

View Article and Find Full Text PDF
Article Synopsis
  • - Actin waves are important structures that play critical roles in various cellular processes such as movement, division, and development, but their underlying architecture was previously unclear.
  • - Advanced imaging techniques revealed that these waves are formed through the creation of new actin filaments, and specific structures like branching junctions are involved.
  • - The study found that branches of the actin network grow towards the cell membrane and that this growth contributes to the wave-like movement of the actin, followed by a collapse of filaments at the back as they disassemble.
View Article and Find Full Text PDF

To maneuver in a three-dimensional space, migrating cells need to accommodate to multiple surfaces. In particular, phagocytes have to explore their environment in the search for particles to be ingested. To examine how cells decide between competing surfaces, we exposed single cells of Dictyostelium to a defined three-dimensional space by confining them between two planar surfaces: those of a cover glass and of a wedged microcantilever.

View Article and Find Full Text PDF

The activation of Ras is common to two activities in cells of : the directed movement in a gradient of chemoattractant and the autonomous generation of propagating waves of actin polymerization on the substrate-attached cell surface. We produced large cells by electric-pulse induced fusion to simultaneously study both activities in one cell. For imaging, a fluorescent label for activated Ras was combined with labels for filamentous actin, PIP3, or PTEN.

View Article and Find Full Text PDF

Chemotactic responses of eukaryotic cells require a signal processing system that translates an external gradient of attractant into directed motion. To challenge the response system to its limits, we increased the size of Dictyostelium discoideum cells by using electric-pulse-induced fusion. Large cells formed multiple protrusions at different sites along the gradient of chemoattractant, independently turned towards the gradient and competed with each other.

View Article and Find Full Text PDF

In a 3D environment, motile cells accommodate their protruding and retracting activities to geometrical cues. Dictyostelium cells migrating on a perforated film explored its holes by forming actin rings around their border and extending protrusions through the free space. The response was initiated when an actin wave passed a hole, and the rings persisted only in the PIP3-rich territories surrounded by a wave.

View Article and Find Full Text PDF

When cells of Dictyostelium discoideum orientate in a gradient of chemoattractant, they are polarized into a protruding front pointing toward the source of attractant, and into a retracting tail. Under the control of chemotactic signal inputs, Ras is activated and PIP3 is synthesized at the front, while the PIP3-degrading phosphatase PTEN decorates the tail region. As a result of signal transduction, actin filaments assemble at the front into dendritic structures associated with the Arp2/3 complex, in contrast to the tail region where a loose actin meshwork is associated with myosin-II and cortexillin, an antiparallel actin-bundling protein.

View Article and Find Full Text PDF

The membrane and actin cortex of a motile cell can autonomously differentiate into two states, one typical of the front, the other of the tail. On the substrate-attached surface of Dictyostelium discoideum cells, dynamic patterns of front-like and tail-like states are generated that are well suited to monitor transitions between these states. To image large-scale pattern dynamics independently of boundary effects, we produced giant cells by electric-pulse-induced cell fusion.

View Article and Find Full Text PDF

Membrane pearling in live cells is observed when the plasma membrane is depleted of its support, the cortical actin network. Upon efficient depolymerization of actin, pearls of variable size are formed, which are connected by nanotubes of ~40 nm diameter. We show that formation of the membrane tubes and their transition into chains of pearls do not require external tension, and that they neither depend on microtubule-based molecular motors nor pressure generated by myosin-II.

View Article and Find Full Text PDF

When cells of Dictyostelium discoideum are exposed to electric pulses they are induced to fuse, yielding motile polykaryotic cells. By combining electron microscopy and direct recording of fluorescent cells, we have studied the emergence of fusion pores in the membranes and the localization of actin to the cell cortex. In response to electric pulsing, the plasma membranes of two contiguous cells are turned into tangles of highly bent and interdigitated membranes.

View Article and Find Full Text PDF

In a motile eukaryotic cell, front protrusion and tail retraction are superimposed on each other. To single out mechanisms that result in front to tail or in tail to front transition, we separated the two processes in time using cells that oscillate between a full front and a full tail state. State transitions were visualized by total internal reflection fluorescence microscopy using as a front marker PIP3 (phosphatidylinositol [3,4,5] tris-phosphate), and as a tail marker the tumor-suppressor PTEN (phosphatase tensin homolog) that degrades PIP3.

View Article and Find Full Text PDF

Background: In a motile polarized cell the actin system is differentiated to allow protrusion at the front and retraction at the tail. This differentiation is linked to the phosphoinositide pattern in the plasma membrane. In the highly motile Dictyostelium cells studied here, the front is dominated by PI3-kinases producing PI(3,4,5)tris-phosphate (PIP3), the tail by the PI3-phosphatase PTEN that hydrolyses PIP3 to PI(4,5)bis-phosphate.

View Article and Find Full Text PDF

Propagating actin waves are dynamic supramolecular structures formed by the self-assembly of proteins within living cells. They are built from actin filaments together with single-headed myosin, the Arp23 complex, and coronin in a defined three-dimensional order. The function of these waves in structuring the cell cortex is studied on the substrate-attached surface of Dictyostelium cells by the use of total internal reflection fluorescence (TIRF) microscopy.

View Article and Find Full Text PDF

Actin waves that travel on the planar membrane of a substrate-attached cell underscore the capability of the actin system to assemble into dynamic structures by the recruitment of proteins from the cytoplasm. The waves have no fixed shape, can reverse their direction of propagation and can fuse or divide. Actin waves separate two phases of the plasma membrane that are distinguished by their lipid composition.

View Article and Find Full Text PDF

Actin polymerization is typically initiated at specific sites in a cell by membrane-bound protein complexes, and the resulting structures are involved in specialized cellular functions, such as migration, particle uptake, or mitotic division. Here we analyze the potential of the actin system to self-organize into waves that propagate on the planar, substrate-attached membrane of a cell. We show that self-assembly involves the ordered recruitment of proteins from the cytoplasmic pool and relate the organization of actin waves to their capacity for applying force.

View Article and Find Full Text PDF