Publications by authors named "Mary E. Hamby"

Article Synopsis
  • Ocular neurodegenerative diseases like glaucoma are major causes of blindness, and current treatments do not effectively prevent damage to the retina and optic nerve.
  • Research highlights sigma-2 receptors as a promising target for neuroprotective therapies, with this study focusing on a drug called CT2074 in a mouse model of glaucoma.
  • Results demonstrated that mice treated with CT2074 had significantly more retinal ganglion cells compared to those that received no treatment, suggesting that CT2074 may help protect against retinal damage from increased intraocular pressure.
View Article and Find Full Text PDF

Introduction: CT1812 is in clinical development for the treatment of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) exploratory proteomics was employed to identify pharmacodynamic biomarkers of CT1812 in mild to moderate AD from two independent clinical trials.

Methods: Unbiased analysis of tandem-mass tag mass spectrometry (TMT-MS) quantitative proteomics, pathway analysis and correlation analyses with volumetric magnetic resonance imaging (vMRI) were performed for the SPARC cohort (NCT03493282).

View Article and Find Full Text PDF

Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aβ) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aβ leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aβ and mediates toxicity.

View Article and Find Full Text PDF

Background: Effective, disease-modifying therapeutics for the treatment of Alzheimer's disease (AD) remain a large unmet need. Extensive evidence suggests that amyloid beta (Aβ) is central to AD pathophysiology, and Aβ oligomers are among the most toxic forms of Aβ. CT1812 is a novel brain penetrant sigma-2 receptor ligand that interferes with the binding of Aβ oligomers to neurons.

View Article and Find Full Text PDF

There is a large unmet medical need to develop disease-modifying treatment options for individuals with age-related degenerative diseases of the central nervous system. The sigma-2 receptor (S2R), encoded by , is expressed in brain and retinal cells, and regulates cell functions via its co-receptor progesterone receptor membrane component 1 (PGRMC1), and through other protein-protein interactions. Studies describing functions of S2R involve the manipulation of expression or pharmacological modulation using exogenous small-molecule ligands.

View Article and Find Full Text PDF

Introduction: Amyloid beta (Aβ) oligomers are one of the most toxic structural forms of the Aβ protein and are hypothesized to cause synaptotoxicity and memory failure as they build up in Alzheimer's disease (AD) patients' brain tissue. We previously demonstrated that antagonists of the sigma-2 receptor complex effectively block Aβ oligomer toxicity. CT1812 is an orally bioavailable, brain penetrant small molecule antagonist of the sigma-2 receptor complex that appears safe and well tolerated in healthy elderly volunteers.

View Article and Find Full Text PDF

Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable.

View Article and Find Full Text PDF

APOE4 is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), increasing the risk of developing the disease by 3-fold in the 14% of the population that are carriers. Despite 25 years of research, the exact mechanisms underlying how APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the brain is primarily expressed by astrocytes and microglia, cell types that are now widely appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur during normal aging to ultimately cause neurodegeneration and cognitive dysfunction.

View Article and Find Full Text PDF

Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions.

View Article and Find Full Text PDF

Microglia, resident phagocytic cells of the central nervous system, are frequent contaminants of astrocyte cultures. Unfortunately and not always fully appreciated, contamination by microglia can confound results of studies designed to elucidate the molecular mechanisms underlying astrocyte-specific responses. The paradigm described herein employs the mitotic inhibitor, cytosine β-D: -arabinofuranoside, followed by the lysosomotropic agent, leucine methylester, to maximally deplete microglia, thereby generating highly enriched astrocyte monolayers that remain viable and functional.

View Article and Find Full Text PDF

Estrogen has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the CNS, including autoimmune inflammation, traumatic injury, stroke, and neurodegenerative diseases. The beneficial effects of estrogens in CNS disorders include mitigation of clinical symptoms, as well as attenuation of histopathological signs of neurodegeneration and inflammation. The cellular mechanisms that underlie these CNS effects of estrogens are uncertain, because a number of different cell types express estrogen receptors in the peripheral immune system and the CNS.

View Article and Find Full Text PDF

Reactive astrogliosis has long been recognized as a ubiquitous feature of CNS pathologies. Although its roles in CNS pathology are only beginning to be defined, genetic tools are enabling molecular dissection of the functions and mechanisms of reactive astrogliosis in vivo. It is now clear that reactive astrogliosis is not simply an all-or-nothing phenomenon but, rather, is a finely gradated continuum of molecular, cellular, and functional changes that range from subtle alterations in gene expression to scar formation.

View Article and Find Full Text PDF

We previously demonstrated that transforming growth factor-beta1 (TGF-beta1), while having no effect alone, enhances nitric oxide (NO) production in primary, purified mouse astrocytes induced by lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma), by recruiting a latent population of astrocytes to respond, thereby enhancing the total number of cells that express Nos2. In this investigation, we evaluated the molecular signaling pathway by which this occurs. We found that purified murine primary astrocytes express mRNA for TGFbetaRII as well as the TGFbetaRI subunit activin-like kinase 5 (ALK5), but not ALK1.

View Article and Find Full Text PDF

Behavioral scientists have increasingly included inflammatory biology as mechanisms in their investigation of psychosocial dynamics on the pathobiology of disease. However, a lack of standardization of inclusion and exclusion criteria and assessment of relevant control variables impacts the interpretation of these studies. The present paper reviews and discusses human biobehavioral factors that can affect the measurement of circulating markers of inflammation.

View Article and Find Full Text PDF

The transcriptional programs of neural progenitor cells change dynamically during neurogenesis, a process regulated by both intrinsic and extrinsic factors. Although many of the transcription factors required for neuronal differentiation have long been identified, we are only at the brink of understanding how epigenetic mechanisms influence transcriptional activity and the accessibility of transcription factors to bind consensus cis-elements. Herein, we delineate the chief epigenetic modifications and the machinery responsible for these alterations.

View Article and Find Full Text PDF

Transforming growth factor-beta1 (TGF-beta1) is upregulated by inflammatory mediators in several neurological diseases/disorders where it either participates in the pathology or provides protection. Often, the biological outcome of TGF-beta1 is dependent upon changes in gene expression. Recently, we demonstrated that TGF-beta1 enhances astrocytic nitric oxide production induced by lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma) by increasing the number of astrocytes in a population that express NOS-2.

View Article and Find Full Text PDF

Nitric oxide (NO) synthase-2 (NOS-2), a key source of NO at sites of neuroinflammation, is induced in astrocyte cultures treated with lipopolysaccharide (LPS) plus interferon-gamma (IFN gamma). A recent study examining the regulation of astrocytic NOS-2 expression demonstrated that transforming growth factor-beta1 (TGF beta 1) potentiated LPS plus IFN gamma-induced NOS-2 expression via expansion of the pool of astrocytes that express NOS-2. Results in the current report indicate that this population-based mechanism of increasing NOS-2 expression is not restricted to TGF beta 1, since it also accounts for the potentiation of NO production in astrocyte cultures by tumor necrosis factor-alpha (TNFalpha).

View Article and Find Full Text PDF

Both transforming growth factor-beta1 (TGF-beta1) and nitric oxide synthase-2 (NOS-2) are upregulated under various neuropathological states. Evidence suggests that TGF-beta1 can either attenuate or augment NOS-2 expression, with the prevailing effect dependent on the experimental paradigm employed and the cell-type under study. The purpose of the present study was to determine the effect of TGF-beta1 on astrocytic NOS-2 expression.

View Article and Find Full Text PDF

Cultures of astrocytes can be readily established and are widely used to study the biological functions of these glial cells in isolation. Unfortunately, contamination by microglia can confound results from such studies. Herein, a simple and highly effective modification of a common procedure to remove microglia from astrocyte cultures is described.

View Article and Find Full Text PDF

Demonstrating consistently reliable levels of expression is a critical part of any gene transfer study in order to assess variability and determine effective gene dosages. This article highlights some of the key methods for studying the expression levels of green fluorescent protein and neurotrophic factors after injections of adeno-associated virus (AAV) vectors into the brain. The data demonstrate greater spread and higher levels of expression using the cytomegalovirus/chicken beta-actin (CBA) promoter coupled with the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), compared to earlier AAV serotype 2 vectors.

View Article and Find Full Text PDF

Previous studies demonstrated that the rat neuron-specific enolase (NSE) promoter is effective for transgene expression in the brain in a variety of adeno-associated virus-2 vectors. This study evaluated the dose response and longer time course of this promoter and compared it to two cytomegalovirus/chicken beta-actin hybrid (CBA) promoter-based systems. NSE promoter-driven green fluorescent protein (GFP)-expressing neurons were found at doses as low as 10(7) particles, with expression increasing in a dose-dependent manner over a 3.

View Article and Find Full Text PDF

Somatic cell gene transfer was used to express a mutant form of alpha-synuclein (alpha-syn) that is associated with Parkinson's disease (PD) in the rat substantia nigra (SN), a brain region that, in humans, degenerates during PD. DNA encoding the A30P mutant of human alpha-syn linked to familial PD was incorporated into an adeno-associated virus vector, which was injected into the adult rat midbrain. The cytomegalovirus/chicken beta-actin promoter was used to drive transgene expression.

View Article and Find Full Text PDF