Publications by authors named "Mary E Natoli"

Isothermal nucleic acid amplification tests have the potential to improve disease diagnosis at the point of care, but it remains challenging to develop multiplexed tests that can detect ≥3 targets or to detect point mutations that may cause disease. These capabilities are critical to enabling informed clinical decision-making for many applications, such as sickle cell disease (SCD). To address this, we describe the development of a multiplexed allele-specific recombinase polymerase amplification (RPA) assay with lateral flow readout.

View Article and Find Full Text PDF

High-risk human papillomavirus (HPV) DNA testing is widely acknowledged as the most sensitive cervical cancer screening method but has limited availability in resource-limited settings, where the burden of cervical cancer is highest. Recently, HPV DNA tests have been developed for use in resource-limited settings, but they remain too costly for widespread use and require instruments that are often limited to centralized laboratories. To help meet the global need for low-cost cervical cancer screening, we developed a prototype, sample-to-answer, point-of-care test for HPV16 and HPV18 DNA.

View Article and Find Full Text PDF

The global COVID-19 pandemic has highlighted the need for rapid, accurate and accessible nucleic acid tests to enable timely identification of infected individuals. We optimized a sample-to-answer nucleic acid test for SARS-CoV-2 that provides results in <1 hour using inexpensive and readily available reagents. The test workflow includes a simple lysis and viral inactivation protocol followed by direct isothermal amplification of viral RNA using RT-LAMP.

View Article and Find Full Text PDF

Frequent and accessible testing is a critical tool to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To develop low-cost rapid tests, many researchers have used reverse transcription loop-mediated isothermal amplification (RT-LAMP) with fluorescent readout. Fluorescent LAMP-based assays can be performed using cost-effective, portable, isothermal instruments that are simpler to use and more rugged than polymerase chain reaction (PCR) instruments.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is a group of common, life-threatening disorders caused by a point mutation in the β globin gene. Early diagnosis through newborn and early childhood screening, parental education, and preventive treatments are known to reduce mortality. However, the cost and complexity of conventional diagnostic methods limit the feasibility of early diagnosis for SCD in resource-limited areas worldwide.

View Article and Find Full Text PDF
Article Synopsis
  • Regular monitoring of HIV-1 viral loads is vital for assessing the effectiveness of antiretroviral therapy, but in areas without access to drug resistance testing, decisions are often based on symptoms rather than data, which can lead to unnecessary treatment changes and higher healthcare costs.
  • A new proof-of-concept assay has been developed to detect the M184V drug resistance mutation in HIV-1 using a simple paper format, combining techniques like recombinase polymerase amplification and oligonucleotide ligation assay.
  • This method shows 100% accuracy in distinguishing between mutant and wild type DNA, potentially allowing for low-cost detection of HIV-1 drug resistance in rural hospital settings.
View Article and Find Full Text PDF

Each day, approximately 830 women and 7400 newborns die from complications during pregnancy and childbirth. Improving maternal and neonatal health will require bringing rapid diagnosis and treatment to the point of care in low-resource settings. However, to date there are few diagnostic tools available that can be used at the point of care to detect the leading causes of maternal and neonatal mortality in low-resource settings.

View Article and Find Full Text PDF

Quantification of ammonia in whole blood has applications in the diagnosis and management of many hepatic diseases, including cirrhosis and rare urea cycle disorders, amounting to more than 5 million patients in the United States. Current techniques for ammonia measurement suffer from limited range, poor resolution, false positives or large, complex sensor set-ups. Here we demonstrate a technique utilizing inexpensive reagents and simple methods for quantifying ammonia in 100 μL of whole blood.

View Article and Find Full Text PDF

This work aims to develop a repeatable enzyme entrapment method that preserves activity within an amicable environment while resisting activity reduction in the presence of environmental challenges. Advances in such methods have wide potential use in biosensor applications. In this work β-galactosidase (lactase) enzyme was entrapped within hydrogel matrices of acrylamide (ACR) crosslinked with N,N'-methylenebisacrylamide (BIS, non-degradable) or poly(ethylene glycol) diacrylate (PEGDA, degradable) to create "biogels.

View Article and Find Full Text PDF