Three critical aspects that define high concentration antibody products (HCAPs) are as follows: 1) formulation composition, 2) dosage form, and 3) primary packaging configuration. HCAPs have become successful in the therapeutic sector due to their unique advantage of allowing subcutaneous self-administration. Technical challenges, such as physical and chemical instability, viscosity, delivery volume limitations, and product immunogenicity, can hinder successful development and commercialization of HCAPs.
View Article and Find Full Text PDFProtein adsorption on surfaces can result in loss of drug product stability and efficacy during the production, storage, and administration of protein-based therapeutics. Surface-active agents (excipients) are typically added in protein formulations to prevent undesired interactions of proteins on surfaces and protein particle formation/aggregation in solution. The objective of this work is to understand the molecular-level competitive adsorption mechanism between the monoclonal antibody (mAb) and a commercially used excipient, polysorbate 80 (PS80), and a novel excipient, -myristoyl phenylalanine--polyetheramine diamide (FM1000).
View Article and Find Full Text PDFAntibody-based therapeutic proteins have highly complex molecular structures. The final therapeutic protein product may contain a wide range of charge variants. Accurate analysis of this charge variant composition is critical to determine manufacturing process consistency and protein stability and ultimately helps to ensure that patients receive a safe and efficacious product.
View Article and Find Full Text PDFProper risk analysis needs to be in place to understand the susceptibility of protein to unfold and aggregate in the presence of interfacial and/or shear stress. Certain techniques, such as agitation/shaking studies, have been traditionally used to understand the impact of these stresses on the protein physical stability. However, the stresses applied in these systems are convoluted, making it difficult to define the control strategy (i.
View Article and Find Full Text PDFBiologic products encounter various types of interfacial stress during development, manufacturing, and clinical administration. When proteins come in contact with vapor-liquid, solid-liquid, and liquid-liquid surfaces, these interfaces can significantly impact the protein drug product quality attributes, including formation of visible particles, subvisible particles, or soluble aggregates, or changes in target protein concentration due to adsorption of the molecule to various interfaces. Protein aggregation at interfaces is often accompanied by changes in conformation, as proteins modify their higher order structure in response to interfacial stresses such as hydrophobicity, charge, and mechanical stress.
View Article and Find Full Text PDFCurr Opin Biotechnol
December 2019
Development of a robust biologic drug product is accomplished by extensive formulation and process development screening studies; however, even in the most optimal formulation, a protein can undergo spontaneous degradation during manufacture, storage, and clinical use. Chemical changes to amino acid residues, such as oxidation of methionine or tryptophan, or changes in charge such as deamidation or carbonylation, can induce conformational changes in the overall protein structure, potentially leading to changes in physical - in addition to chemical - stability. Oxidation is often caused by light exposure or the presence of metal ions or peroxides.
View Article and Find Full Text PDFDetermining the moisture content in lyophilized solids is a fundamental step towards predicting the quality and stability of lyophilized products, but conventional methods are time-consuming, invasive, and destructive. High levels of residual moisture in a lyophilized product can lead to cake collapse, product degradation, and reduced shelf life. The aim of this study was to develop a fast, noninvasive, nondestructive, and inexpensive method for determining the moisture content in a lyophilized monoclonal antibody (mAb) formulation using benchtop low-field time-domain nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFProtein formulation stability is difficult to predict a priori and generally involves long-term stability studies. It is of interest to develop an analytical method that can predict stability trends reliably. Here, pulse proteolysis was evaluated as an analytical tool to predict solution-state stability in different formulations.
View Article and Find Full Text PDFHigh concentration protein solutions are generally produced by spin column concentration (SCC) during early development and by tangential flow filtration (TFF) during later stages, when greater quantities of protein become available. This is based on the assumption that the protein generated by the SCC process would be fairly similar to the TFF process material. In this study, we report the case of high concentration solutions of an Fc fusion protein produced by the two processes using the same upstream drug substance (DS) with very different storage stability.
View Article and Find Full Text PDFMolecularly targeted research and diagnostic tools are essential to advancing understanding and detection of many diseases. Metals often impart the desired functionality to these tools, and conjugation of high-affinity chelators to proteins is carried out to enable targeted delivery of the metal. This approach has been much more effective with large lanthanide series metals than smaller transition metals.
View Article and Find Full Text PDFThe Extracellular 1 (EC1) domain of E-cadherin has been shown to be important for cadherin-cadherin homophilic interactions. Cadherins are responsible for calcium-mediated cell-cell adhesion located at the adherens junction of the biological barriers (i.e.
View Article and Find Full Text PDFThe unique metal abstracting peptide asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to dld-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion.
View Article and Find Full Text PDFSynthetically generated metallopeptides have the potential to serve a variety of roles in biotechnology applications, but the use of such systems is often hampered by the inability to control secondary reactions. We have previously reported that the Ni(II) complex of the tripeptide LLL-asparagine-cysteine-cysteine, LLL-Ni(II)-NCC, undergoes metal-facilitated chiral inversion to dld-Ni(II)-NCC, which increases the observed superoxide scavenging activity. However, the mechanism for this process remained unexplored.
View Article and Find Full Text PDFBiophysical tools have been invaluable in formulating therapeutic proteins. These tools characterize protein stability rapidly in a variety of solution conditions, but in general, the techniques lack the ability to discern site-specific information to probe how solution environment acts to stabilize or destabilize the protein. NMR spectroscopy can provide site-specific information about subtle structural changes of a protein under different conditions, enabling one to assess the mechanism of protein stabilization.
View Article and Find Full Text PDFThe metal abstraction peptide (MAP) tag is a tripeptide sequence capable of abstracting a metal ion from a chelator and binding it with extremely high affinity at neutral pH. Initial studies on the nickel-bound form of the complex demonstrate that the tripeptide asparagine-cysteine-cysteine (NCC) binds metal with 2N:2S, square planar geometry and behaves as both a structural and functional mimic of Ni superoxide dismutase (Ni-SOD). Electronic absorption, circular dichroism (CD), and magnetic CD (MCD) data collected for Ni-NCC are consistent with a diamagnetic Ni(II) center.
View Article and Find Full Text PDFNickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of superoxide to molecular oxygen and hydrogen peroxide, but the overall reaction mechanism has yet to be determined. Peptide-based models of the 2N:2S nickel coordination sphere of Ni-SOD have provided some insight into the mechanism of this enzyme. Here we show that the coordination sphere of Ni-SOD can be mimicked using the tripeptide asparagine-cysteine-cysteine (NCC).
View Article and Find Full Text PDF