Renal ammonia metabolism is the primary mechanism through which the kidneys maintain acid-base homeostasis, but the molecular mechanisms regulating renal ammonia generation are unclear. In these studies, we evaluated the role of the proximal tubule basolateral plasma membrane electrogenic sodium bicarbonate cotransporter 1 variant A (NBCe1-A) in this process. Deletion of the NBCe1-A gene caused severe spontaneous metabolic acidosis in mice.
View Article and Find Full Text PDFDietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion changes in parallel during changes in dietary protein intake. Dietary protein restriction decreases endogenous acid production and decreases urinary ammonia excretion, a major component of net acid excretion.
View Article and Find Full Text PDFRegulated dicarboxylate transport is critical for acid-base homeostasis, prevention of calcium nephrolithiasis, regulation of collecting duct sodium chloride transport, and the regulation of blood pressure. Although luminal dicarboxylate reabsorption via NaDC1 (SLC13A2) is believed to be the primary mechanism regulating renal dicarboxylate transport, the specific localization of NaDC1 in the human kidney is currently unknown. This study's purpose was to determine NaDC1's expression in normal and neoplastic human kidneys.
View Article and Find Full Text PDFUnlabelled: The bicarbonate transporter, NBCe1 (SLC4A4), is necessary for at least two components of the proximal tubule contribution to acid-base homeostasis, filtered bicarbonate reabsorption, and ammonia metabolism. This study's purpose was to determine NBCe1's role in a third component of acid-base homeostasis, organic anion metabolism, by studying mice with NBCe1 deletion. Because NBCe1 deletion causes metabolic acidosis, we also examined acid-loaded wild-type adult mice to determine if the effects of NBCe1 deletion were specific to NBCe1 deletion or were a non-specific effect of the associated metabolic acidosis.
View Article and Find Full Text PDFGlutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2015
The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na(+)-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
June 2015
Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance.
View Article and Find Full Text PDFThe Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3(-) were similar in control (C) and CD-Rhbg/Rhcg-KO mice.
View Article and Find Full Text PDFThe rhesus glycoproteins, Rh B glycoprotein (RHBG) and Rh C glycoprotein (RHCG), are recently identified ammonia transporters. Rhcg expression is necessary for normal male fertility, but its specific cellular expression is unknown, and Rhbg has not been reported to be expressed in the male reproductive tract. This study sought to determine the specific cellular expression of Rhcg, to determine whether Rhbg is expressed in the male reproductive tract, and, if so, to determine which cells express Rhbg using real-time RT-PCR, immunoblot analysis, and immunohistochemistry.
View Article and Find Full Text PDFRenal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
April 2013
The ammonia transporter family member, Rh B Glycoprotein (RhBG/Rhbg), is essential for ammonia transport by the rodent kidney, but in the human kidney mRNA but not protein expression has been reported. Because ammonia transport is fundamental for acid-base homeostasis, the current study addressed RhBG expression in the human kidney. Two distinct RhBG mRNA sequences have been reported, with different numbers of consecutive cytosines at nt1265 and thus encoding different carboxy-tails.
View Article and Find Full Text PDFThe ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO).
View Article and Find Full Text PDFThe Rhesus factor protein, Rh C glycoprotein (Rhcg), is an ammonia transporter whose expression in the collecting duct is necessary for normal ammonia excretion both in basal conditions and in response to metabolic acidosis. Hypokalemia is a common clinical condition associated with increased renal ammonia excretion. In contrast to basal conditions and metabolic acidosis, increased ammonia excretion during hypokalemia can lead to an acid-base disorder, metabolic alkalosis, rather than maintenance of acid-base homeostasis.
View Article and Find Full Text PDFHypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2010
Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbg's role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla.
View Article and Find Full Text PDFRh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
July 2009
A family of gas-transporting proteins, the Mep/Amt/Rh glycoprotein family, has been identified recently. These are integral membrane proteins, are widely expressed in sites of gas transport, and are known to transport the gaseous molecule, NH(3), and recent evidence indicates they can transport CO(2). Because the mammalian lung is a critical site for gas transport, the current studies examine the expression of the nonerythroid members of this extended family, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), in the normal mouse lung.
View Article and Find Full Text PDFNH3 movement across plasma membranes has traditionally been ascribed to passive, lipid-phase diffusion. However, ammonia-specific transporters, Mep/Amt proteins, are present in primitive organisms and mammals express orthologs of Mep/Amt proteins, the Rh glycoproteins. These findings suggest that the mechanisms of NH3 movement in mammalian tissues should be reexamined.
View Article and Find Full Text PDFAmmonia metabolism and transport are critical for acid-base homeostasis. The ammonia transporter family member Rh C glycoprotein (Rhcg) is expressed in distal renal tubular segments, and its expression is regulated in parallel with renal ammonia metabolism. However, there are inconsistencies in its reported subcellular distribution, with both apical and basolateral Rhcg reported in rat and human kidney and only apical expression in mouse kidney.
View Article and Find Full Text PDFBackground/aims: Cyclosporine (CsA)-induced renal injury causes renal tubular acidosis. The current study was performed to evaluate the influence of CsA-induced renal injury on the ammonia transporter family members, Rh B-glycoprotein (Rhbg) and Rh C-glycoprotein (Rhcg).
Methods: Rats were treated daily for 1 or 4 weeks with vehicle (VH) or CsA.
Am J Physiol Renal Physiol
October 2007
Acute renal injury induces metabolic acidosis, but its specific effects on the collecting duct, the primary site for urinary ammonia secretion, the primary component of net acid excretion, are incompletely understood. We induced ischemia-reperfusion (I/R) acute renal injury in Sprague-Dawley rats by clamping the renal pedicles bilaterally for 30 min followed by reperfusion for 6 h. Control rats underwent sham surgery without renal pedicle clamping.
View Article and Find Full Text PDFKidneys can maintain acid-base homeostasis, despite reduced renal mass, through adaptive changes in net acid excretion, of which ammonia excretion is the predominant component. The present study examines whether these adaptations are associated with changes in the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). We used normal Sprague-Dawley rats and a 5/6 ablation-infarction model of reduced renal mass; control rats underwent sham operation.
View Article and Find Full Text PDFRecent studies have identified the presence of a novel Mep/Amt/Rh glycoprotein family of proteins that may play an important role in transmembrane ammonia transport. One of the mammalian members of this family, Rh C glycoprotein (RhCG), transports ammonia, is expressed in distal nephron sites that are critically important for ammonia secretion, exhibits increased expression in response to chronic metabolic acidosis, and originally was cloned as a tumor-related protein. The purpose of our studies was to determine the localization of RhCG in the normal and neoplastic human kidney.
View Article and Find Full Text PDFThe primary mechanism by which the kidneys mediate net acid excretion is through ammonia metabolism. In the current study, we examined whether chronic metabolic acidosis, which increases ammonia metabolism, alters the cell-specific and/or the subcellular expression of the ammonia transporter family member, Rhcg, in the outer medullary collecting duct in the inner stripe (OMCDi). Chronic metabolic acidosis was induced in normal SD rats by HCl ingestion for 7 days; controls were pair-fed.
View Article and Find Full Text PDFChronic metabolic acidosis induces dramatic increases in net acid excretion that are predominantly due to increases in urinary ammonia excretion. The current study examines whether this increase is associated with changes in the expression of the renal ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). Chronic metabolic acidosis was induced in Sprague-Dawley rats by HCl ingestion for 1 wk; control animals were pair-fed.
View Article and Find Full Text PDF