Publications by authors named "Mary Dinauer"

Neutrophils play a crucial role in maintaining lung health by defending against infections and participating in inflammation processes. Here we describe a detailed protocol for evaluating pulmonary neutrophil phenotype using a murine model of sterile inflammation induced by the fungal cell wall particle zymosan. We provide step-by-step instructions for the isolation of single cells from both lung tissues and airspaces, followed by comprehensive staining techniques for both cell surface markers and intracellular components.

View Article and Find Full Text PDF

Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils.

View Article and Find Full Text PDF

Aspergillus fumigatus is an important opportunistic fungal pathogen and causes invasive pulmonary aspergillosis in conditions with compromised innate antifungal immunity, including chronic granulomatous disease, which results from inherited deficiency of the superoxide-generating leukocyte NADPH oxidase 2 (NOX2). Derivative oxidants have both antimicrobial and immunoregulatory activity and, in the context of A. fumigatus, contribute to both fungal killing and dampening inflammation induced by fungal cell walls.

View Article and Find Full Text PDF

The leukocyte NADPH oxidase 2 (NOX2) regulates inflammation independent of its antimicrobial activity. Inherited defects in NOX2 lead to chronic granulomatous disease (CGD), associated with recurrent bacterial and fungal infections, often with excessive neutrophilic inflammation that results in significant inflammatory burden and tissue damage. We previously showed that excessive leukotriene B4 (LTB4) production by NOX2-deficient mouse neutrophils was a key driver of elevated lung neutrophil infiltration in the initial response to pulmonary challenge with the model fungal particle zymosan.

View Article and Find Full Text PDF

The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood.

View Article and Find Full Text PDF

Tissue-resident macrophages are increasingly recognized as important determinants of organ homeostasis, tissue repair, remodeling and regeneration. Although the ontogeny and function of tissue-resident macrophages has been identified as distinct from postnatal hematopoiesis, the inability to specify, in vitro, similar populations that recapitulate these developmental waves has limited our ability to study their function and potential for regenerative applications. We took advantage of the concept that tissue-resident macrophages and monocyte-derived macrophages originate from distinct extra-embryonic and definitive hematopoietic lineages to devise a system to generate pure cultures of macrophages that resemble tissue-resident or monocyte-derived subsets.

View Article and Find Full Text PDF

The interaction between neutrophils and endothelial cells is critical for the pathogenesis of vascular inflammation. However, the regulation of neutrophil adhesive function remains not fully understood. Intravital microscopy demonstrates that neutrophil DREAM promotes neutrophil recruitment to sites of inflammation induced by TNF-α but not MIP-2 or fMLP.

View Article and Find Full Text PDF

Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by genetic defects in leukocyte NADPH oxidase, which has both microbicidal and immunomodulatory roles. Hence, CGD is characterized by recurrent bacterial and fungal infections as well as aberrant inflammation. Fungal cell walls induce neutrophilic inflammation in CGD; yet, underlying mechanisms are incompletely understood.

View Article and Find Full Text PDF

Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe bacterial and fungal infections. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase.

View Article and Find Full Text PDF

Neutrophil responses against pathogens must be balanced between protection and immunopathology. Factors that determine these outcomes are not well-understood. In a mouse model of genital herpes simplex virus-2 (HSV-2) infection, which results in severe genital inflammation, antibody-mediated neutrophil depletion reduced disease.

View Article and Find Full Text PDF

Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8).

View Article and Find Full Text PDF

Neutrophils employ several mechanisms to restrict fungi, including the action of enzymes such as myeloperoxidase (MPO) or NADPH oxidase, and the release of neutrophil extracellular traps (NETs). Moreover, they cooperate, forming "swarms" to attack fungi that are larger than individual neutrophils. Here, we designed an assay for studying how these mechanisms work together and contribute to neutrophil's ability to contain clusters of live Candida.

View Article and Find Full Text PDF

Leukocyte reduced NADP (NADPH) oxidase plays a key role in host defense and immune regulation. Genetic defects in NADPH oxidase result in chronic granulomatous disease (CGD), characterized by recurrent bacterial and fungal infections and aberrant inflammation. Key drivers of hyperinflammation induced by fungal cell walls in CGD are still incompletely defined.

View Article and Find Full Text PDF

Primary disorders of neutrophil function result from impairment in neutrophil responses that are critical for host defense. This chapter summarizes inherited disorders of neutrophils that cause defects in neutrophil adhesion, migration, and oxidative killing. These include the leukocyte adhesion deficiencies, actin defects and other disorders of chemotaxis, hyperimmunoglobulin E syndrome, Chédiak-Higashi Syndrome, neutrophil specific granule deficiency, chronic granulomatous disease, and myeloperoxidase deficiency.

View Article and Find Full Text PDF

Assays based on ectopic expression of NOX NADPH oxidase subunits in heterologous mammalian cells are an important approach for investigating features of this family of enzymes. These model systems have been used to analyze the biosynthesis and functional domains of NOX enzyme components as well as their regulation and cellular activities. This chapter provides an overview of the basic principles and applications of heterologous whole cell assays in studying NOX NADPH oxidases.

View Article and Find Full Text PDF

Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1-/-) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor.

View Article and Find Full Text PDF

Primary immunodeficiencies affecting the function of neutrophils and other phagocytic leukocytes are notable for an increased susceptibility to bacterial and fungal infections as a result of impaired leukocyte recruitment, ingestion, and/or killing of microbes. The underlying molecular defects can also impact other innate immune responses to infectious and inflammatory stimuli, leading to inflammatory and autoimmune complications that are not always directly related to infection. This review will provide an update on congenital disorders affecting neutrophil function in which a combination of host defense and inflammatory complications are prominent, including nicotinamide dinucleotide phosphate oxidase defects in chronic granulomatous disease and β2 integrin defects in leukocyte adhesion deficiency.

View Article and Find Full Text PDF

Biallelic loss-of-function (LOF) mutations of the NCF4 gene, encoding the p40phox subunit of the phagocyte NADPH oxidase, have been described in only 1 patient. We report on 24 p40phox-deficient patients from 12 additional families in 8 countries. These patients display 8 different in-frame or out-of-frame mutations of NCF4 that are homozygous in 11 of the families and compound heterozygous in another.

View Article and Find Full Text PDF

We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells.

View Article and Find Full Text PDF

The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood.

View Article and Find Full Text PDF