Raising larvae of Hamilton (zebrafish) is a challenging task that requires skill and a significant daily time investment. We have developed a simple nursery and a husbandry regimen that streamlines procedures and is feasible for small laboratories to carry out in the absence of support staff. The nursery is inexpensive to build and easy to maintain.
View Article and Find Full Text PDFAims/introduction: The human insulin gene/preproinsulin protein mutation C43G disrupts disulfide bond formation and causes diabetes in humans. Previous in vitro studies showed that these mutant proteins are retained in the endoplasmic reticulum (ER), are not secreted and are associated with decreased secretion of wild-type insulin. The current study extends this work to an in vivo zebrafish model.
View Article and Find Full Text PDFA convenient method for chemically treating zebrafish is to introduce the reagent into the tank water, where it will be taken up by the fish. However, this method makes it difficult to know how much reagent is absorbed or taken up per fish. Some experimental questions, particularly those related to metabolic studies, may be better addressed by delivering a defined quantity to each fish, based on weight.
View Article and Find Full Text PDFThe adult zebrafish has the potential to become an important model for diabetes-related research. To realize this potential, small-scale methods for analyzing pancreas function are required. The measurement of blood glucose level is a commonly used method for assessing beta-cell function, but the small size of the zebrafish presents challenges both for collecting blood samples and for measuring glucose.
View Article and Find Full Text PDFIn recent years, there has been significant progress in understanding the detailed mechanisms of pancreas development. These studies have in turn influenced research aimed at producing pancreatic islet cells from stem cells. Here, we review recent progress in both of these areas.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2009
The control of organ size and position relies, at least in part, upon appropriate regulation of the signals that specify organ progenitor fields. Pancreatic cell fates are specified by retinoic acid (RA), and proper size and localization of the pancreatic field are dependent on tight control of RA signaling. Here we show that the RA-degrading Cyp26 enzymes play a critical role in defining the normal anterior limit of the pancreatic field.
View Article and Find Full Text PDFDevelopment of the vertebrate pancreas is a complex stepwise process comprising regionalization, cell differentiation, and morphogenesis. Studies in zebrafish are contributing to an emerging picture of pancreas development in which extrinsic signaling molecules influence intrinsic transcriptional programs to allow ultimate differentiation of specific pancreatic cell types. Zebrafish experiments have revealed roles for several signaling molecules in aspects of this process; for example our own work has shown that retinoic acid signals specify the pre-pancreatic endoderm.
View Article and Find Full Text PDFCdx transcription factors have crucial roles in anteroposterior patterning of the nervous system and mesoderm. Here we focus on the role of cdx4 in patterning the endoderm in zebrafish. We show that cdx4 has roles in determining pancreatic beta-cell number, directing midline convergence of beta-cells during early pancreatic islet formation, and specifying the anteroposterior location of foregut organs.
View Article and Find Full Text PDFDuring vertebrate development, the endodermal germ layer becomes regionalized along its anteroposterior axis to give rise to a variety of organs, including the pancreas. Genetic studies in zebrafish and mice have established that the signaling molecule retinoic acid (RA) plays a crucial role in endoderm patterning and promotes pancreas development. To identify how RA signals to pancreatic progenitors in the endoderm, we have developed a novel cell transplantation technique, using the ability of the SOX32 transcription factor to confer endodermal identity, to selectively target reagents to (or exclude them from) the endodermal germ layer of the zebrafish.
View Article and Find Full Text PDFAnat Rec A Discov Mol Cell Evol Biol
August 2004
Aging cartilage displays increased chondrocyte apoptosis and decreased responsiveness of chondrocytes to growth factors. The molecular mechanisms responsible for these changes have not been identified. Bag-1 is a Bcl-2-binding protein that promotes cell survival, interacts with a diverse group of cellular proteins, and may integrate multiple pathways involved in controlling cell survival, growth, and phenotype.
View Article and Find Full Text PDFThe anti-apoptotic protein Bcl-2 has been shown to function in roles unrelated to apoptosis in a variety of cell types. We have previously reported that loss of Bcl-2 expression alters chondrocyte morphology and modulates aggrecan expression via an apoptosis-independent pathway. Here we show that Bcl-2 is required for chondrocytes to maintain expression of a variety of cartilage-specific matrix proteins.
View Article and Find Full Text PDF