Type I CRISPR-Cas systems are the most abundant adaptive immune systems in bacteria and archaea. Target interference relies on a multi-subunit, RNA-guided complex called Cascade, which recruits a trans-acting helicase-nuclease, Cas3, for target degradation. Type I systems have rarely been used for eukaryotic genome engineering applications owing to the relative difficulty of heterologous expression of the multicomponent Cascade complex.
View Article and Find Full Text PDFVoltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies.
View Article and Find Full Text PDFMultiple lines of evidence indicate that mitochondrial dysfunction is central to Parkinson's disease. Here we investigate the mechanism by which parkin, an E3 ubiquitin ligase, and USP30, a mitochondrion-localized deubiquitylase, regulate mitophagy. We find that mitochondrial damage stimulates parkin to assemble Lys 6, Lys 11 and Lys 63 chains on mitochondria, and that USP30 is a ubiquitin-specific deubiquitylase with a strong preference for cleaving Lys 6- and Lys 11-linked multimers.
View Article and Find Full Text PDFCyclotides belong to the family of cyclic cystine-knot peptides and have shown promise as scaffolds for protein engineering and pharmacological modulation of cellular protein activity. Cyclotides are characterized by a cystine-knotted topology and a head-to-tail cyclic polypeptide backbone. While they are primarily produced in plants, cyclotides have also been obtained by chemical synthesis.
View Article and Find Full Text PDFRecent advances enabling the cloning of human immunoglobulin G genes have proven effective for discovering monoclonal antibodies with therapeutic potential. However, these antibody-discovery methods are often arduous and identify only a few candidates from numerous antibody-secreting plasma cells or plasmablasts. We describe an in vivo enrichment technique that identifies broadly neutralizing human antibodies with high frequency.
View Article and Find Full Text PDFPurpose: Our goal was to develop a potent humanized antibody against mouse/human CXCL12. This report summarized its in vitro and in vivo activities.
Experimental Design: Cell surface binding and cell migration assays were used to select neutralizing hamster antibodies, followed by testing in several animal models.
The loading of oligomeric helicases onto replication origins marks an essential step in replisome assembly. In cells, dedicated AAA+ ATPases regulate loading, however, the mechanism by which these factors recruit and deposit helicases has remained unclear. To better understand this process, we determined the structure of the ATPase region of the bacterial helicase loader DnaC from Aquifex aeolicus to 2.
View Article and Find Full Text PDFObjectives: To review quality-of-life issues in women diagnosed with gynecologic cancers.
Data Sources: Research studies, review articles, and medical and nursing text-books.
Conclusions: Women diagnosed with gynecologic cancers carry a heavy physical and emotional burden because of surgical morbidity, chemotherapy toxicities, loss of fertility, changes in body image, sexual concerns, and altered relationships.