The ongoing SARS-CoV-2 pandemic has emphasized the importance of technologies to rapidly detect emerging pathogens and understand their interactions with hosts. Platforms based on the combination of biological recognition and electrochemical signal transduction, generally termed bioelectrochemical platforms, offer unique opportunities to both sense and study pathogens. Improved bio-based materials have enabled enhanced control over the biotic-abiotic interface in these systems.
View Article and Find Full Text PDFThe concentration of nitrate (NO) in Narragansett Bay has been shown to undergo considerable temporal and spatial variation. However, the dynamics of this flux has never been monitored on a fine-scale (<100 m, < 1 d) or in real-time. Whole-cell bio-reporters are promising candidates for low cost environmental sensing of bioavailable nutrients.
View Article and Find Full Text PDFMicroplastics or plastic particles less than 5 mm in size are a ubiquitous and damaging pollutant in the marine environment. However, the interactions between these plastic particles and marine microorganisms are just starting to be understood. The objective of this study was to measure the responses of a characteristic marine organism (Synechococcus sp.
View Article and Find Full Text PDFMicroplastics and nanoplastics are emerging pollutants, widespread both in marine and in freshwater environments. Cyanobacteria are also ubiquitous in water and play a vital role in natural ecosystems, using photosynthesis to produce oxygen. Using photography, fluorescence microscopy and cryogenic and scanning electron microscopy (cryo-SEM, SEM) we investigated the physicochemical response of one of the most predominant seawater cyanobacteria (, PCC 7002) and freshwater cyanobacteria ( Nageli PCC 7942) when exposed to 10 μm diameter polystyrene (microPS) and 100 nm diameter polystyrene (nanoPS) particles.
View Article and Find Full Text PDFLarge-scale genetic screening of neonatal dried blood spots for episomal DNA has a great potential to lower patient mortality and morbidity through early diagnosis of primary immunodeficiencies. However, DNA extraction from the surface of dried blood spots remains one of the most time consuming, costly, and labor-intensive parts of DNA analysis. In the present study, we developed and optimized a rapid methodology using only 50 V and heat to extract episomal DNA from dried blood spots prepared from diagnostic cord blood samples.
View Article and Find Full Text PDFPolyvinyl chloride (PVC) endotracheal tubes (ETTs) nanoetched with a fungal lipase have been shown to reduce bacterial growth and biofilm formation and could be an inexpensive solution to the complex problem of ventilator-associated pneumonia (VAP). Although bacterial growth and colonization on these nanoetched materials have been well characterized, little is known about the mechanism by which the fungal lipase degrades the PVC and, thus, alters its properties to minimize bacteria functions. This study used X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to better describe the surface chemistry of both unetched and lipase nanoetched PVC ETT.
View Article and Find Full Text PDFVentilator-associated pneumonia (VAP) is a serious complication of mechanical ventilation that has been shown to be associated with increased mortality rates and medical costs in the pediatric intensive care unit. Currently, there is no cost-effective solution to the problems posed by VAP. Endotracheal tubes (ETTs) that are resistant to bacterial colonization and that inhibit biofilm formation could provide a novel solution to the problems posed by VAP.
View Article and Find Full Text PDFVentilator-associated pneumonia (VAP) is a serious and costly clinical problem. Specifically, receiving mechanical ventilation for over 24 hours increases the risk of VAP and is associated with high morbidity, mortality, and medical costs. Cost-effective endotracheal tubes (ETTs) that are resistant to bacterial infections could help prevent this problem.
View Article and Find Full Text PDFVentilator-associated pneumonia (VAP) is a serious and costly clinical problem affecting pediatrics today. This device-related infection is thought to be directly linked to the colonization of the endotracheal tube (ETT) during long-term mechanical ventilation. Because of unspecific radiographic and clinical signs, VAP is especially difficult to diagnose in the pediatric population.
View Article and Find Full Text PDF