Publications by authors named "Mary C Hunt"

Elastase B (lasB) is a multifunctional metalloenzyme secreted by the gram-negative pathogen , and this enzyme orchestrates several physiopathological events during bacteria-host interplays. LasB is considered to be a potential target for the development of an innovative chemotherapeutic approach, especially against multidrug-resistant strains. Recently, our group showed that 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)]ClO (Ag-phendione) and [Cu(phendione)](ClO).

View Article and Find Full Text PDF

Peroxisomes are nearly ubiquitous organelles involved in a number of metabolic pathways that vary between organisms and tissues. A common metabolic function in mammals is the partial degradation of various (di)carboxylic acids via α- and β-oxidation. While only a small number of enzymes catalyze the reactions of β-oxidation, numerous auxiliary enzymes have been identified to be involved in uptake of fatty acids and cofactors required for β-oxidation, regulation of β-oxidation and transport of metabolites across the membrane.

View Article and Find Full Text PDF

Acyl-CoA thioesterase (ACOT) activities are found in prokaryotes and in several compartments of eukaryotes where they hydrolyze a wide range of acyl-CoA substrates and thereby regulate intracellular acyl-CoA/CoA/fatty acid levels. ACOT9 is a mitochondrial ACOT with homologous genes found from bacteria to humans and in this study we have carried out an in-depth kinetic characterization of ACOT9 to determine its possible physiological function. ACOT9 showed unusual kinetic properties with activity peaks for short-, medium-, and saturated long-chain acyl-CoAs with highest V max with propionyl-CoA and (iso) butyryl-CoA while K cat/K m was highest with saturated long-chain acyl-CoAs.

View Article and Find Full Text PDF

Pancreatic β-cells secrete insulin in response to various stimuli to control blood glucose levels. This insulin release is the result of a complex interplay between signaling, membrane potential and intracellular calcium levels. Various nutritional and hormonal factors are involved in regulating this process.

View Article and Find Full Text PDF

The importance of peroxisomes in lipid metabolism is now well established and peroxisomes contain approximately 60 enzymes involved in these lipid metabolic pathways. Several acyl-CoA thioesterase enzymes (ACOTs) have been identified in peroxisomes that catalyze the hydrolysis of acyl-CoAs (short-, medium-, long- and very long-chain), bile acid-CoAs, and methyl branched-CoAs, to the free fatty acid and coenzyme A. A number of acyltransferase enzymes, which are structurally and functionally related to ACOTs, have also been identified in peroxisomes, which conjugate (or amidate) bile acid-CoAs and acyl-CoAs to amino acids, resulting in the production of amidated bile acids and fatty acids.

View Article and Find Full Text PDF

Lysine acetylation is a major post-translational modification of proteins and regulates many physiological processes such as metabolism, cell migration, aging, and inflammation. Proteomic studies have identified numerous lysine-acetylated proteins in human and mouse models (Kim, S. C.

View Article and Find Full Text PDF

Endocannabinoids have been implicated in cancer development and cause heterogenous effects in tumor cells, by inducing apoptosis, reducing migration, causing anti-angiogenic activity and alterations in the cell cycle resulting in growth arrest. Recently, several novel amides of fatty acids that are structurally related to endocannabinoids have been isolated from mammalian sources, although the functions of these fatty amides are not well studied. One group of these novel fatty acid amides are the N-acyl taurines (fatty acids conjugated to the amino acid taurine).

View Article and Find Full Text PDF

The discovery of glycine conjugates of long-chain fatty acids (N-acyl glycines) in the brain and other non-neuronal tissues has led to the identification of an emerging class of bioactive lipids. The biological activities of N-acyl glycines include antinociceptive, anti-inflammatory and antiproliferative effects, and activation of G-protein-coupled receptors. However, despite the fact that N-acyl glycines are emerging as a distinct lipid signaling family, pathways for their production are not fully elucidated.

View Article and Find Full Text PDF

The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes.

View Article and Find Full Text PDF

Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing beta-oxidation in peroxisomes. Although the peroxisomal membrane appears to be impermeable to CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters peroxisomes as acyl-CoAs, but it is not known how this pool is regulated.

View Article and Find Full Text PDF

Peroxisomes are single membrane bound organelles present in almost all eukaryotic cells, and to date have been shown to contain approximately 60 identified enzymes involved in various metabolic pathways, including the oxidation of a variety of lipids. These lipids include very long-chain fatty acids, methyl branched fatty acids, prostaglandins, bile-acid precursors and xenobiotics that are either beta-oxidized or alpha-oxidized in peroxisomes. The recent identification of several acyl-CoA thioesterases and acyltransferases in peroxisomes has revealed their various functions in acting as auxiliary enzymes in alpha- and beta-oxidation in this organelle.

View Article and Find Full Text PDF

Phytanic acid and pristanic acid are derived from phytol, which enter the body via the diet. Phytanic acid contains a methyl group in position three and, therefore, cannot undergo beta-oxidation directly but instead must first undergo alpha-oxidation to pristanic acid, which then enters beta-oxidation. Both these pathways occur in peroxisomes, and in this study we have identified a novel peroxisomal acyl-CoA thioesterase named ACOT6, which we show is specifically involved in phytanic acid and pristanic acid metabolism.

View Article and Find Full Text PDF

The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPARalpha). Fasting or treatment of mice with the PPARalpha agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively.

View Article and Find Full Text PDF

The cytosolic acyl-coenzyme A thioesterase I (Acot1) is an enzyme that hydrolyzes long-chain acyl-CoAs of C(12)-C(20)-CoA in chain length to the free fatty acid and CoA. Acot1 was shown previously to be strongly upregulated at the mRNA and protein level in rodents by fibrates. In this study, we show that Acot1 mRNA levels were increased by 90-fold in liver by treatment with Wy-14,643 and that Acot1 mRNA was also increased by 15-fold in the liver of hepatocyte nuclear factor 4alpha (HNF4alpha) knockout animals.

View Article and Find Full Text PDF

A wide variety of endogenous carboxylic acids and xenobiotics are conjugated with amino acids, before excretion in urine or bile. The conjugation of carboxylic acids and bile acids with taurine and glycine has been widely characterized, and de novo synthesized bile acids are conjugated to either glycine or taurine in peroxisomes. Peroxisomes are also involved in the oxidation of several other lipid molecules, such as very long chain acyl-CoAs, branched chain acyl-CoAs, and prostaglandins.

View Article and Find Full Text PDF

The maintenance of cellular levels of free fatty acids and acyl-CoAs, the activated form of free fatty acids, is extremely important, as imbalances in lipid metabolism have serious consequences for human health. Acyl-coenzyme A (CoA) thioesterases (ACOTs) hydrolyze acyl-CoAs to the free fatty acid and CoASH, and thereby have the potential to regulate intracellular levels of these compounds. We previously identified and characterized a mouse ACOT gene cluster comprised of six genes that apparently arose by gene duplications encoding acyl-CoA thioesterases with localizations in cytosol (ACOT1), mitochondria (ACOT2), and peroxisomes (ACOT3-6).

View Article and Find Full Text PDF

Dicarboxylic acids are formed by omega-oxidation of fatty acids in the endoplasmic reticulum and degraded as the CoA ester via beta-oxidation in peroxisomes. Both synthesis and degradation of dicarboxylic acids occur mainly in kidney and liver, and the chain-shortened dicarboxylic acids are excreted in the urine as the free acids, implying that acyl-CoA thioesterases (ACOTs), which hydrolyze CoA esters to the free acid and CoASH, are needed for the release of the free acids. Recent studies show that peroxisomes contain several acyl-CoA thioesterases with different functions.

View Article and Find Full Text PDF

Acyl-CoA thioesterases, also known as acyl-CoA hydrolases, are a group of enzymes that hydrolyze CoA esters such as acyl-CoAs (saturated, unsaturated, branched-chain), bile acid-CoAs, CoA esters of prostaglandins, etc., to the corresponding free acid and CoA. However, there is significant confusion regarding the nomenclature of these genes.

View Article and Find Full Text PDF

In human liver, unconjugated bile acids can be formed by the action of bile acid-CoA thioesterases (BACTEs), whereas bile acid conjugation with taurine or glycine (amidation) is catalyzed by bile acid-CoA:amino acid N-acyltransferases (BACATs). Both pathways exist in peroxisomes and cytosol. Bile acid amidation facilitates biliary excretion, whereas the accumulation of unconjugated bile acids may become hepatotoxic.

View Article and Find Full Text PDF

Peroxisomes are organelles that function in the beta-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mainly chain-shortened and then transported to mitochondria for further metabolism. We have now identified and characterized two peroxisomal acyl-CoA thioesterases, named PTE-Ia and PTE-Ic, that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A.

View Article and Find Full Text PDF

Bile acid-CoA:amino acid N-acyltransferase (BACAT) catalyzes the conjugation of bile acids to glycine and taurine for excretion into bile. By use of site-directed mutagenesis and sequence comparisons, we have identified Cys-235, Asp-328, and His-362 as constituting a catalytic triad in human BACAT (hBACAT) and identifying BACAT as a member of the type I acyl-CoA thioesterase gene family. We therefore hypothesized that hBACAT may also hydrolyze fatty acyl-CoAs and/or conjugate fatty acids to glycine.

View Article and Find Full Text PDF

Sterol 27-hydroxylase has been suggested to be involved in an alternative pathway for the elimination of cholesterol from macrophages and early atherosclerotic lesions. We have previously shown that human lung macrophages as well as monocyte-derived macrophages have a relatively high activity of sterol 27-hydroxylase (CYP27). This enzyme converts intracellular cholesterol into 27-hydroxycholesterol and cholestenoic acid that flux from cultured cells into the medium.

View Article and Find Full Text PDF

Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. These enzymes are localized in almost all cellular compartments such as endoplasmic reticulum, cytosol, mitochondria and peroxisomes. Acyl-CoA thioesterases are highly regulated by peroxisome proliferator-activated receptors (PPARs), and other nutritional factors, which has led to the conclusion that they are involved in lipid metabolism.

View Article and Find Full Text PDF

Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH).

View Article and Find Full Text PDF