Reductive amination is a relatively simple and convenient strategy for coupling purified polysaccharides to carrier proteins. Following their synthesis, glycoconjugates can be used to assess the protective capacity of specific microbial polysaccharides in animal models of infection and/or to produce polyclonal antiserum and monoclonal antibodies for a variety of immune assays. Here, we describe a reproducible method for chemically activating the 6-deoxyheptan capsular polysaccharide (CPS) from Burkholderia pseudomallei and covalently linking it to recombinant CRM197 diphtheria toxin mutant (CRM197) to produce the glycoconjugate, CPS-CRM197.
View Article and Find Full Text PDFand are Gram-negative, soil-dwelling bacteria that are found in a wide variety of environmental niches. While is the causative agent of melioidosis in humans and animals, members of the complex typically only cause disease in immunocompromised hosts. In this study, we report the identification of strains isolated from either patients or soil in Laos and Thailand that express a -like 6-deoxyheptan capsular polysaccharide (CPS).
View Article and Find Full Text PDFMelioidosis is a disease that is difficult to treat due to the causative organism, being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated against an inhalational infection with in Balb/c mice.
View Article and Find Full Text PDFMelioidosis is a tropical infectious disease caused by Burkholderia pseudomallei. Melioidosis is associated with diverse clinical manifestations and high mortality. Early diagnosis is needed for appropriate treatment, but it takes several days to obtain bacterial culture results.
View Article and Find Full Text PDFMelioidosis is a fatal tropical disease caused by the environmental Gram-negative bacterium, Burkholderia pseudomallei. This bacterium is intrinsically resistant to several antibiotics and treatment of melioidosis requires prolonged antibiotic administration. To date, there are no vaccines available for melioidosis.
View Article and Find Full Text PDF, the gram-negative bacterium that causes melioidosis, is notoriously difficult to treat with antibiotics. A significant effort has focused on identifying protective vaccine strategies to prevent melioidosis. However, when used as individual medical countermeasures both antibiotic treatments (therapeutics or post-exposure prophylaxes) and experimental vaccine strategies remain partially protective.
View Article and Find Full Text PDFand the closely related species, , produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed.
View Article and Find Full Text PDFBurkholderia pseudomallei, the causative agent of melioidosis, is a facultative intracellular, Gram-negative pathogen that is highly infectious via the respiratory route and can cause severe, debilitating, and often fatal diseases in humans and animals. At present, no licensed vaccines for immunization against this CDC Tier 1 select agent exist. Studies in our lab have previously demonstrated that subunit vaccine formulations consisting of a B.
View Article and Find Full Text PDFBackground: Melioidosis, an infectious disease caused by Burkholderia pseudomallei, is endemic in many tropical developing countries and has a high mortality. Here we evaluated combinations of a lateral flow immunoassay (LFI) detecting B. pseudomallei capsular polysaccharide (CPS) and enzyme-linked immunosorbent assays (ELISA) detecting antibodies against hemolysin co-regulated protein (Hcp1) or O-polysaccharide (OPS) for diagnosing melioidosis.
View Article and Find Full Text PDFMelioidosis, caused by the Gram-negative bacterium , is a serious infectious disease with diverse clinical manifestations. The morbidity and mortality of melioidosis is high in Southeast Asia and no licensed vaccines currently exist. This study was aimed at evaluating human cellular and humoral immune responses in Thai adults against four melioidosis vaccine candidate antigens.
View Article and Find Full Text PDFMelioidosis is a tropical infectious disease caused by Burkholderia pseudomallei that results in high mortality. Hemolysin co-regulated protein 1 (Hcp1) and O-polysaccharide (OPS) are vaccine candidates and potential diagnostic antigens. The correlation of classes/subclasses of antibodies against these antigens with clinical characteristics of melioidosis patients is unknown.
View Article and Find Full Text PDFMelioidosis and glanders, respectively caused by the Gram-negative bacteria Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), are considered as urgent public health issues in developing countries and potential bioterrorism agents. Bp and Bm lipopolysaccharides (LPS) have been identified as attractive vaccine candidates for the development of prophylactic measures against melioidosis and glanders. Bp and Bm express structurally similar LPSs wherein the O-antigen (OAg) portion consists of a heteropolymer whose repeating unit is a disaccharide composed of d-glucose and 6-deoxy-l-talose residues, the latter being diversely acetylated and methylated.
View Article and Find Full Text PDFInfection with the gram-negative bacterium can result in a life-threatening disease known as melioidosis. Historically, melioidosis was a common infection in military forces serving in Southeast Asia, and it has the potential to have a serious impact on force health readiness. With the U.
View Article and Find Full Text PDFBurkholderia pseudomallei is a flagellated Gram-negative bacterium which is the causative agent of melioidosis. The disease poses a major public health problem in tropical regions and diabetes is a major risk factor. The high mortality rate of melioidosis is associated with severe sepsis which involves the overwhelming production of pro-inflammatory cytokines.
View Article and Find Full Text PDFMelioidosis is a fatal infectious disease caused by the environmental bacterium It is highly endemic in Asia and northern Australia but neglected in many other tropical countries. Melioidosis patients have a wide range of clinical manifestations, and definitive diagnosis requires bacterial culture, which can be time-consuming. A reliable rapid serological tool is greatly needed for disease surveillance and diagnosis.
View Article and Find Full Text PDF, the etiologic agent of melioidosis, is an important but under-recognized cause of disease in the tropics. Although first described over a century ago as a septicemic illness associated with morphine addicts in Rangoon, Burma, there is little information regarding the incidence of melioidosis in present-day Myanmar. To address this issue, we used two recently developed and validated serological assays to detect -specific antibodies in 124 serum samples obtained from febrile patients in the delta region of Myanmar.
View Article and Find Full Text PDF, the etiologic agent of melioidosis, is predicted to be ubiquitous in tropical regions of the world with areas of highest endemicity throughout Southeast Asia (SEA). Nevertheless, the distribution of and the burden of melioidosis in many SEA countries remain unclear. In Cambodia, only two human endemic cases of melioidosis were reported through 2008 and since then only a few hundred cases have been described in the literature.
View Article and Find Full Text PDF, the etiologic agent of melioidosis, causes severe disease in humans and animals. Diagnosis and treatment of melioidosis can be challenging, and no licensed vaccines currently exist. Several studies have shown that this pathogen expresses a variety of structurally conserved protective antigens that include cell surface polysaccharides and cell-associated and cell-secreted proteins.
View Article and Find Full Text PDFBurkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the etiologic agents of melioidosis and glanders, respectively, cause severe disease in both humans and animals. Studies have highlighted the importance of Bp and Bm lipopolysaccharides (LPS) as vaccine candidates. Here we describe the synthesis of seven oligosaccharides as the minimal structures featuring all of the reported acetylation/methylation patterns associated with Bp and Bm LPS O-antigens (OAgs).
View Article and Find Full Text PDFBurkholderia pseudomallei, the causative agent of melioidosis, is an important public health threat due to limited therapeutic options for treatment. Efforts to improve therapeutics for B. pseudomallei infections are dependent on the need to understand the role of B.
View Article and Find Full Text PDFBackground: Melioidosis, caused by the flagellated bacterium Burkholderia pseudomallei, is a life-threatening and increasingly recognized emerging disease. Toll-like receptor (TLR) 5 is a germline-encoded pattern recognition receptor to bacterial flagellin. We evaluated the association of a nonsense TLR5 genetic variant that truncates the receptor with clinical outcomes and with immune responses in melioidosis.
View Article and Find Full Text PDFBackground: Melioidosis is a severe disease caused by Burkholderia pseudomallei. Clinical manifestations are diverse and acute infections require immediate treatment with effective antibiotics. While culture is the current diagnostic standard, it is time-consuming and has low sensitivity.
View Article and Find Full Text PDFB. pseudomallei is the cause of melioidosis, a serious an often fatal disease of humans and animals. The closely related bacterium B.
View Article and Find Full Text PDFis the causative agent of melioidosis, a severe infection endemic to many tropical regions. Lipopolysaccharide (LPS) is recognized as an important virulence factor used by Isolates of have been shown to express one of four different types of LPS (typical LPS, atypical LPS types B and B2, and rough LPS) and in vitro studies have demonstrated that LPS types may impact disease severity. The association between LPS types and clinical manifestations, however, is still unknown, in part because an effective method for LPS type identification is not available.
View Article and Find Full Text PDF, a tier 1 select agent and the etiological agent of melioidosis, transitions from soil and aquatic environments to infect a variety of vertebrate and invertebrate hosts. During the transition from an environmental saprophyte to a mammalian pathogen, encounters and responds to rapidly changing environmental conditions. Environmental sensing systems that control cellular levels of cyclic di-GMP promote pathogen survival in diverse environments.
View Article and Find Full Text PDF