Publications by authors named "Mary Brummet"

Coronavirus disease 2019 (COVID-19) is characterized by impaired oxygen (O) homeostasis, including O sensing, uptake, transport/delivery, and consumption. Red blood cells (RBCs) are central to maintaining O homeostasis and undergo direct exposure to coronavirus . We thus hypothesized that COVID-19 alters RBC properties relevant to O homeostasis, including the hematological profile, Hb O transport characteristics, rheology, and the hypoxic vasodilatory (HVD) reflex.

View Article and Find Full Text PDF

We have synthesized a series of 10 new, PSMA-targeted, near-infrared imaging agents intended for use in vivo for fluorescence-guided surgery (FGS). Compounds were synthesized from the commercially available amine-reactive active NHS ester of DyLight800. We altered the linker between the PSMA-targeting urea moiety and the fluorophore with a view to improve the pharmacokinetics.

View Article and Find Full Text PDF
Article Synopsis
  • CRYβB2 is found to be elevated in African American breast tumors and is linked to increased cancer stemness, growth, and metastasis.
  • It upregulates genes related to stress responses and DNA repair while down-regulating apoptosis-related genes, leading to aggressive tumor traits.
  • Additionally, higher levels of CRYβB2 and its interaction with nucleolin correlate with decreased survival rates in patients, highlighting its potential role in breast cancer disparities.
View Article and Find Full Text PDF

Plasmid DNA (pDNA) nanoparticles synthesized by complexation with linear polyethylenimine (lPEI) are one of the most effective non-viral gene delivery vehicles. However, the lack of scalable and reproducible production methods and the high toxicity have hindered their clinical translation. Previously, we have developed a scalable flash nanocomplexation (FNC) technique to formulate pDNA/lPEI nanoparticles using a continuous flow process.

View Article and Find Full Text PDF

α-Particle emitters targeting the prostate-specific membrane antigen (PSMA) proved effective in treating patients with prostate cancer who were unresponsive to the corresponding β-particle therapy. At is an α-emitter that may engender less toxicity than other α-emitting agents. We synthesized a new At-labeled radiotracer targeting PSMA that resulted from the search for a pharmacokinetically optimized agent.

View Article and Find Full Text PDF

Background: During storage, red blood cells (RBCs) undergo significant biochemical and morphologic changes, referred to collectively as the "storage lesion". It was hypothesized that these defects may arise from disrupted oxygen-based regulation of RBC energy metabolism, with resultant depowering of intrinsic antioxidant systems.

Study Design And Methods: As a function of storage duration, the dynamic range in RBC metabolic response to three models of biochemical oxidant stress (methylene blue, hypoxanthine/xanthine oxidase, and diamide) was assessed, comparing glycolytic flux by NMR and UHPLC-MS methodologies.

View Article and Find Full Text PDF

Prostate-specific membrane antigen (PSMA) is a promising target for the treatment of advanced prostate cancer (PC) and various solid tumors. Although PSMA-targeted radiopharmaceutical therapy (RPT) has enabled significant imaging and prostate-specific antigen (PSA) responses, accumulating clinical data are beginning to reveal certain limitations, including a subgroup of non-responders, relapse, radiation-induced toxicity, and the need for specialized facilities for its administration. To date non-radioactive attempts to leverage PSMA to treat PC with antibodies, nanomedicines or cell-based therapies have met with modest success.

View Article and Find Full Text PDF

Prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical therapy is a new option for patients with advanced prostate cancer refractory to other treatments. Previously, we synthesized a β-particle-emitting low-molecular-weight compound, Lu-L1 which demonstrated reduced off-target effects in a xenograft model of prostate cancer. Here, we leveraged that scaffold to synthesize α-particle-emitting analogs of L1, Bi-L1 and Ac-L1, to evaluate their safety and cell kill effect in PSMA-positive (+) xenograft models.

View Article and Find Full Text PDF

Auger radiopharmaceutical therapy is a promising strategy for micrometastatic disease given high linear energy transfer and short range in tissues, potentially limiting normal tissue toxicities. We previously demonstrated anti-tumor efficacy of a small-molecule Auger electron emitter targeting the prostate-specific membrane antigen (PSMA), 2-[3-[1-carboxy-5-(4-[I]iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid), or I-DCIBzL, in a mouse xenograft model. Here, we investigated the therapeutic efficacy, long-term toxicity, and biodistribution of I-DCIBzL in a micrometastatic model of prostate cancer (PC).

View Article and Find Full Text PDF

Neuroendocrine tumors (NETs) are an extremely heterogenous group of malignancies with variable clinical behavior. Molecular imaging of patients with NETs allows for effective patient stratification and treatment guidance and is crucial in selection of targeted therapies. Positron emission tomography (PET) with the radiotracer L-[F]FDOPA is progressively being utilized for non-invasive visualization of NETs and pancreatic β-cell hyperplasia.

View Article and Find Full Text PDF

Polyelectrolyte complex (PEC) nanoparticles assembled from plasmid DNA (DNA) and polycations such as linear polyethylenimine (PEI) represent a major nonviral delivery vehicle for gene therapy tested thus far. Efforts to control the size, shape, and surface properties of DNA/polycation nanoparticles have been primarily focused on fine-tuning the molecular structures of the polycationic carriers and on assembly conditions such as medium polarity, pH, and temperature. However, reproducible production of these nanoparticles hinges on the ability to control the assembly kinetics, given the nonequilibrium nature of the assembly process and nanoparticle composition.

View Article and Find Full Text PDF

Purpose: To develop a prostate-specific membrane antigen (PSMA)-targeted radiotherapeutic for metastatic castration-resistant prostate cancer (mCRPC) with optimized efficacy and minimized toxicity employing the β-particle radiation of Lu.

Methods: We synthesized 14 new PSMA-targeted, Lu-labeled radioligands (Lu-L1-Lu-L14) using different chelating agents and linkers. We evaluated them in vitro using human prostate cancer PSMA(+) PC3 PIP and PSMA(-) PC3 flu cells and in corresponding flank tumor models.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy for hematologic malignancies is fraught with several unknowns, including number of functional T cells that engage target tumor, durability and subsequent expansion and contraction of that engagement, and whether toxicity can be managed. Non-invasive, serial imaging of CAR T cell therapy using a reporter transgene can address those issues quantitatively. We have transduced anti-CD19 CAR T cells with the prostate-specific membrane antigen (PSMA) because it is a human protein with restricted normal tissue expression and has an expanding array of positron emission tomography (PET) and therapeutic radioligands.

View Article and Find Full Text PDF

Targeted radiopharmaceutical therapy (TRT) using α-particle radiation is a promising approach for treating both large and micrometastatic lesions. We developed prostate-specific membrane antigen (PSMA)-targeted low-molecular-weight agents for Pb-based TRT of patients with prostate cancer (PC) by evaluating the matching γ-emitting surrogate, Pb. Five rationally designed low-molecular-weight ligands (L1-L5) were synthesized using the lysine-urea-glutamate scaffold, and PSMA inhibition constants were determined.

View Article and Find Full Text PDF

Magnetic nanoparticle (MNP)-induced hyperthermia is currently being evaluated for localized prostate cancer. We evaluated the feasibility of tumor-selective delivery of prostate-specific membrane antigen (PSMA)-targeted MNPs in a murine model with high-resolution magnetic resonance imaging (MRI) after intravenous administration of MNPs at a concentration necessary for hyperthermia. A PSMA-targeted MNP was synthesized and evaluated using T-weighted MRI, after intravenous administration of 50 mg/kg of the MNP.

View Article and Find Full Text PDF

5D3 is a new high-affinity murine monoclonal antibody specific for prostate-specific membrane antigen (PSMA). PSMA is a target for the imaging and therapy of prostate cancer. In-labeled antibodies have been used as surrogates for Lu/Y-labeled therapeutics.

View Article and Find Full Text PDF

Introduction: Radiolabeled, low-molecular-weight prostate-specific membrane antigen (PSMA) inhibitors based on the Glu-ureido pharmacophore show promise for the detection and treatment of castration-resistant prostate cancer; however, high renal retention of activity, related in part to overexpression of PSMA in kidneys can be problematic. The goal of the current study was to investigate the use of brush border enzyme-cleavable linkers as a strategy for reducing kidney activity levels from radiolabeled PSMA inhibitors.

Methods: PSMA-769 (6), a derivative of the prototypical PSMA inhibitor (((S)‑1‑carboxy‑5‑(4‑iodobenzamido)pentyl)carbamoyl)glutamate (12) modified to contain a Gly-Tyr linker, and its protected tin precursor (11) were synthesized starting from the basic pharmacophore molecule Lys-urea-Glu.

View Article and Find Full Text PDF

Siglec-F is a pro-apoptotic receptor on mouse eosinophils that recognizes 6'-sulfated sialyl Lewis X and 6'-sulfated sialyl N-acetyl-lactosamine as well as multivalent sialyl N-acetyl-lactosamine structures on glycan arrays. We hypothesized that attenuation of the carbohydrate sulfotransferase 1 (CHST1) gene encoding keratan sulfate galactose 6-O-sulfotransferase, an enzyme likely required for 6'-sulfation of some of these putative Siglec-F glycan ligands, would result in decreased Siglec-F lung ligand levels and enhanced allergic eosinophilic airway inflammation. Tissue analysis detected CHST1 expression predominantly not only in parenchymal cells but not in airway epithelium, the latter being a location where Siglec-F ligands are located.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CAIX) is a cell surface enzyme that is over-expressed in approximately 95% of cases of clear cell renal cell carcinoma (ccRCC), the most common renal cancer. We synthesized and performed in vitro and in vivo evaluation of a dual-motif ligand, [64Cu]XYIMSR-06, for imaging CAIX expression on ccRCC tumors using positron emission tomography (PET). [64Cu]XYIMSR-06 was generated in yields of 51.

View Article and Find Full Text PDF

Unlabelled: Alpha-particle emitters have a high linear energy transfer and short range, offering the potential for treating micrometastases while sparing normal tissues. We developed a urea-based, At-labeled small molecule targeting prostate-specific membrane antigen (PSMA) for the treatment of micrometastases due to prostate cancer (PC).

Methods: PSMA-targeted (2S)-2-(3-(1-carboxy-5-(4-At-astatobenzamido)pentyl)ureido)-pentanedioic acid (At- 6: ) was synthesized.

View Article and Find Full Text PDF

We developed a new scaffold for radionuclide-based imaging and therapy of clear cell renal cell carcinoma (ccRCC) targeting carbonic anhydrase IX (CAIX). Compound XYIMSR-01, a DOTA-conjugated, bivalent, low-molecular-weight ligand, has two moieties that target two separate sites on CAIX, imparting high affinity. We synthesized [111In]XYIMSR-01 in 73.

View Article and Find Full Text PDF

Background: Sialic acid-binding, immunoglobulin-like lectin (Siglec) F is a glycan-binding protein selectively expressed on mouse eosinophils. Its engagement induces apoptosis, suggesting a pathway for ameliorating eosinophilia in the setting of asthma and other eosinophil-associated diseases. Siglec-F recognizes sialylated sulfated glycans in glycan-binding assays, but the identities of endogenous sialoside ligands and their glycoprotein carriers in vivo are unknown.

View Article and Find Full Text PDF

Background: Siglec-F and Siglec-8 are functional paralog proapoptotic cell surface receptors expressed on mouse and human eosinophils, respectively. Whereas Siglec-8 mediated death involves caspases and/or reactive oxygen species (ROS) generation and mitochondrial injury, very little is known about Siglec-F-mediated signaling and apoptosis. Therefore the objective of the current experiments was to better define apoptosis pathways mediated by Siglec-F and Siglec-8.

View Article and Find Full Text PDF

Background: Sialic acid-binding immunoglobulin-like lectin (Siglec)-F is a proapoptotic receptor on mouse eosinophils, but little is known about its natural tissue ligand.

Objective: We previously reported that the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) is required for constitutive Siglec-F lung ligand synthesis. We therefore hypothesized that attenuation of ST3Gal-III will decrease Siglec-F ligand levels and enhance allergic eosinophilic airway inflammation.

View Article and Find Full Text PDF

Sialic acid-binding immunoglobulin-like lectin (Siglec)-F, an inhibitory receptor on mouse eosinophils, preferentially recognizes the glycan ligand 6'-sulfated sialyl Lewis X, but little is known about the requirements for its lung expression. RT-PCR and immunohistochemistry were used to detect and localize the sulfotransferase keratin sulfate galactose 6-O sulfotransferase (KSGal6ST, also known as carbohydrate sulfotransferase 1; gene name, Chst1) that is putatively required for 6'-sulfated Sialyl Lewis X synthesis. RT-PCR detected the greatest constitutive expression of Chst1 in lung, liver, and spleen tissue.

View Article and Find Full Text PDF