Publications by authors named "Mary Anne T Rubio"

The essential deamination of adenosine A to inosine at the wobble base is the individual tRNA modification with the greatest effects on mRNA decoding, empowering a single tRNA to translate three different codons. To date, many aspects of how eukaryotic deaminases specifically select their multiple substrates remain unclear. Here, using cryo-EM, we present the structure of a eukaryotic ADAT2/3 deaminase bound to a full-length tRNA, revealing that the enzyme distorts the anticodon loop, but in contrast to the bacterial enzymes, selects its substrate via sequence-independent contacts of eukaryote-acquired flexible or intrinsically unfolded motifs distal from the conserved catalytic core.

View Article and Find Full Text PDF

Every type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) are key players in protein synthesis. To be fully active, tRNAs undergo extensive post-transcriptional modifications, including queuosine (Q), a hypermodified 7-deaza-guanosine present in the anticodon of several tRNAs in bacteria and eukarya. Here, molecular and biochemical approaches revealed that in the protozoan parasite Trypanosoma brucei, Q-containing tRNAs have a preference for the U-ending codons for asparagine, aspartate, tyrosine and histidine, analogous to what has been described in other systems.

View Article and Find Full Text PDF

Ribosome biosynthesis, best studied in opisthokonts, is a highly complex process involving numerous protein and RNA factors. Yet, very little is known about the early stages of pre-18S rRNA processing even in these model organisms, let alone the conservation of this mechanism in other eukaryotes. Here we extend our knowledge of this process by identifying and characterizing the essential protein TbUTP10, a homolog of yeast U3 small nucleolar RNA-associated protein 10 - UTP10 (HEATR1 in human), in the excavate parasitic protist Trypanosoma brucei.

View Article and Find Full Text PDF

Transfer RNAs acquire a variety of naturally occurring chemical modifications during their maturation; these fine-tune their structure and decoding properties in a manner critical for protein synthesis. We recently reported that in the eukaryotic parasite, , a methylation and deamination event are unexpectedly interconnected, whereby the tRNA adenosine deaminase (TbADAT2/3) and the 3-methylcytosine methyltransferase (TbTrm140) strictly rely on each other for activity, leading to formation of mC and mU at position 32 in several tRNAs. Still however, it is not clear why these two enzymes, which work independently in other systems, are strictly codependent in Here, we show that these enzymes exhibit binding synergism, or a mutual increase in binding affinity, that is more than the sum of the parts, when added together in a reaction.

View Article and Find Full Text PDF

Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve.

View Article and Find Full Text PDF

All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability.

View Article and Find Full Text PDF

Nucleic acids undergo naturally occurring chemical modifications. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified. Despite recent progress, the mechanism for the biosynthesis of most modifications is not fully understood, owing, in part, to the difficulty associated with reconstituting enzyme activity in vitro.

View Article and Find Full Text PDF

Transfer RNA modifications play pivotal roles in protein synthesis. N6-threonylcarbamoyladenosine (t6A) and its derivatives are modifications found at position 37, 3΄-adjacent to the anticodon, in tRNAs responsible for ANN codons. These modifications are universally conserved in all domains of life.

View Article and Find Full Text PDF

Most eukaryotic ribosomes contain 26/28S, 5S, and 5.8S large subunit ribosomal RNAs (LSU rRNAs) in addition to the 18S rRNA of the small subunit (SSU rRNA). However, in kinetoplastids, a group of organisms that include medically important members of the genus Trypanosoma and Leishmania, the 26/28S large subunit ribosomal RNA is uniquely composed of 6 rRNA fragments.

View Article and Find Full Text PDF

Establishment of the early genetic code likely required strategies to ensure translational accuracy and inevitably involved tRNA post-transcriptional modifications. One such modification, wybutosine/wyosine is crucial for translational fidelity in Archaea and Eukarya; yet it does not occur in Bacteria and has never been described in mitochondria. Here, we present genetic, molecular and mass spectromery data demonstrating the first example of wyosine in mitochondria, a situation thus far unique to kinetoplastids.

View Article and Find Full Text PDF

In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications.

View Article and Find Full Text PDF

All tRNAs undergo post-transcriptional chemical modifications as part of their natural maturation pathway. Some modifications, especially those in the anticodon loop, play important functions in translational efficiency and fidelity. Among these, 1-methylguanosine, at position 37 (m(1)G37) of the anticodon loop in several tRNAs, is evolutionarily conserved and participates in translational reading frame maintenance.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) encoded by the nuclear genome are surprisingly dynamic. Although tRNAs function in protein synthesis occurring on cytoplasmic ribosomes, tRNAs can transit from the cytoplasm to the nucleus and then again return to the cytoplasm by a process known as the tRNA retrograde process. Subsets of the cytoplasmic tRNAs are also imported into mitochondria and function in mitochondrial protein synthesis.

View Article and Find Full Text PDF

Editing of adenosine (A) to inosine (I) at the first anticodon position in tRNA is catalyzed by adenosine deaminases acting on tRNA (ADATs). This essential reaction in bacteria and eukarya permits a single tRNA to decode multiple codons. Bacterial ADATa is a homodimer with two bound essential Zn(2+).

View Article and Find Full Text PDF

Fe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis.

View Article and Find Full Text PDF

Kinetoplastids encode a single nuclear tryptophanyl tRNA that contains a CCA anticodon able to decode the UGG codons used in cytoplasmic protein synthesis but cannot decode the mitochondrial UGA codons. Following mitochondrial import, this problem is circumvented in Trypanosoma brucei by specifically editing the tRNA(Trp) anticodon to UCA, which can now decode the predominant mitochondrial UGA tryptophan codons. This tRNA also undergoes an unusual thiolation at position 33 of the anticodon loop, the only known modification at U33 in any tRNA.

View Article and Find Full Text PDF

Due to a complete lack of the tRNA genes in the mitochondrial genome of Trypanosoma brucei, all tRNAs needed for mitochondrial translation have to be imported into the organelle from the cytosol. A previous study showed that the modified nucleotide s(2)U could act as a negative determinant for mitochondrial tRNA import in another kinetoplastid, Leishmania tarentolae. We have investigated whether the same type of cytosolic control for tRNA retention exists in T.

View Article and Find Full Text PDF

Mitochondrial genomes generally encode a minimal set of tRNAs necessary for protein synthesis. However, a number of eukaryotes import tRNAs from the cytoplasm into their mitochondria. For instance, Saccharomyces cerevisiae imports cytoplasmic tRNA(Gln) into the mitochondrion without any added protein factors.

View Article and Find Full Text PDF

Transfer RNA (tRNA) plays a pivotal role in protein synthesis within cells, where it is recognized by one cognate aminoacyl-tRNA synthetase, in competition with the remaining non-cognate synthetases, and esterified with an amino acid. For many years the levels of tRNA aminoacylation, in a given population of cellular RNA, have been analyzed using methods that include northern analysis and/or oxidation techniques to separate aminoacylated from non-aminoacylated species. In the present report we describe an approach recently developed by us that combines oxidation-protection with polyadenylation and PCR.

View Article and Find Full Text PDF

In all organisms, precursor tRNAs are processed into mature functional units by post-transcriptional changes. These involve 5' and 3' end trimming as well as the addition of a significant number of chemical modifications, including RNA editing. The only known example of non-organellar C to U editing of tRNAs occurs in trypanosomatids.

View Article and Find Full Text PDF

Human mitochondrial tRNA (hmt-tRNA) mutations are associated with a variety of diseases including mitochondrial myopathies, diabetes, encephalopathies, and deafness. Because the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. Here, we use a variety of known mutations in hmt-tRNA(Phe) to investigate the mechanisms that lead to malfunctions.

View Article and Find Full Text PDF

Adenosine-to-inosine editing in the anticodon of tRNAs is essential for viability. Enzymes mediating tRNA adenosine deamination in bacteria and yeast contain cytidine deaminase-conserved motifs, suggesting an evolutionary link between the two reactions. In trypanosomatids, tRNAs undergo both cytidine-to-uridine and adenosine-to-inosine editing, but the relationship between the two reactions is unclear.

View Article and Find Full Text PDF

Editing of tRNAs is widespread in nature and either changes the decoding properties or restores the folding of a tRNA. Unlike the phylogenetically disperse adenosine (A) to inosine (I) editing, cytosine (C) to uridine (U) editing has only been previously described in organellar tRNAs. We have shown that cytoplasmic tRNA(Thr)(AGU) undergoes two distinct editing events in the anticodon loop: C to U and A to I.

View Article and Find Full Text PDF

Aminoacyl-tRNA (aa-tRNA) formation, an essential process in protein biosynthesis, is generally achieved by direct attachment of an amino acid to tRNA by the aa-tRNA synthetases. An exception is Gln-tRNA synthesis, which in eukaryotes is catalyzed by glutaminyl-tRNA synthetase (GlnRS), while most bacteria, archaea, and chloroplasts employ the transamidation pathway, in which a tRNA-dependent glutamate modification generates Gln-tRNA. Mitochondrial protein synthesis is carried out normally by mitochondrial enzymes and organelle-encoded tRNAs that are different from their cytoplasmic counterparts.

View Article and Find Full Text PDF