Publications by authors named "Mary Ann Stringer"

Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase.

View Article and Find Full Text PDF

Cereal arabinoxylans (AXs) are complex polysaccharides in terms of their pattern of arabinose and ferulic acid substitutions, which influence their properties in structural and nutritional applications. We have evaluated the influence of the molecular structure of three AXs from wheat and rye with distinct substitutions on the activity of β-xylanases from different glycosyl hydrolase families (GH 5_34, 8, 10 and 11). The arabinose and ferulic acid substitutions influence the accessibility of the xylanases, resulting in specific profiles of arabinoxylan-oligosaccharides (AXOS).

View Article and Find Full Text PDF

Fungal genomes often contain several copies of genes that encode carbohydrate active enzymes having similar activity. The copies usually have slight sequence variability, and it has been suggested that the multigenecity represents distinct reaction optima versions of the enzyme. Whether the copies represent differences in substrate attack proficiencies of the enzyme have rarely been considered.

View Article and Find Full Text PDF

Expression of a Trichoderma reesei gene coding for a putative GH30 xylanase in Aspergillus oryzae led to isolation and purification of a novel xylanase exhibiting catalytic properties different from those of the previously characterized GH30 xylanase XYN IV of T. reesei. The novel enzyme, named XYN VI, exhibited catalytic properties similar to appendage-dependent GH30 glucuronoxylanases previously recognized only in bacteria.

View Article and Find Full Text PDF