Publications by authors named "Mary Ann Karp"

Article Synopsis
  • The Chinese hibiscus is a popular decorative and medicinal plant, but it is vulnerable to various bacterial infections.
  • In March 2019, a bacterial isolate named "Hibiscus 35-1" was identified from affected hibiscus plants in a New York greenhouse, showing leaf spots and chlorosis after being moved from Florida.
  • Experiments confirmed the pathogenicity of "Hibiscus 35-1," causing symptoms in inoculated hibiscus plants while control plants showed no symptoms, highlighting the significance of bacterial pathogens in ornamental horticulture.
View Article and Find Full Text PDF

The taxonomy of Pseudomonas has been extensively studied, yet the determination of species is currently difficult because of recent taxonomic changes and the lack of complete genomic sequence data. We isolated a bacterium causing a leaf spot disease on hibiscus (Hibiscus rosa-sinensis). Whole genome sequencing revealed similarity to Pseudomonas amygdali pv.

View Article and Find Full Text PDF

Soil pathogens affect plant community structure and function through negative plant-soil feedbacks that may contribute to the invasiveness of non-native plant species. Our understanding of these pathogen-induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown.

View Article and Find Full Text PDF

Soil pathogens are believed to be major contributors to negative plant-soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant-soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above-ground plant responses. As a result, specific soil pathogen responses accompanying above-ground plant community dynamics are largely unknown.

View Article and Find Full Text PDF

Peronosporomycete (oomycete) communities inhabiting the rhizospheres of three plant species were characterized and compared to determine whether communities obtained by direct soil DNA extractions (soil communities) differ from those obtained using baiting techniques (bait communities). Using two sets of Peronosporomycete-specific primers, a portion of the 5' region of the large subunit (28S) rRNA gene was amplified from DNA extracted either directly from rhizosphere soil or from hempseed baits floated for 48 h over rhizosphere soil. Amplicons were cloned, sequenced, and then subjected to phylogenetic and diversity analyses.

View Article and Find Full Text PDF