Publications by authors named "Mary Ann Handel"

In Brief: A new allele of the senataxin gene Setxspcar3 causes meiotic arrest of spermatocytes with aberrant DNA damage and accumulation of R-loops.

Abstract: An unbiased screen for discovering novel mouse genes for fertility identified the spcar3, spermatocyte arrest 3, mutant phenotype. The spcar3 mutation identified a new allele of the Setx gene, encoding senataxin, a DNA/RNA helicase that regulates transcription termination by resolving DNA/RNA hybrid R-loop structures.

View Article and Find Full Text PDF

Genetic analyses of mammalian gametogenesis and fertility have the potential to inform about two important and interrelated clinical areas: infertility and contraception. Here, we address the genetics and genomics underlying gamete formation, productivity and function in the context of reproductive success in mammalian systems, primarily mouse and human. Although much is known about the specific genes and proteins required for meiotic processes and sperm function, we know relatively little about other gametic determinants of overall fertility, such as regulation of gamete numbers, duration of gamete production, and gamete selection and function in fertilization.

View Article and Find Full Text PDF

Meiosis is specialized cell division during gametogenesis that produces genetically unique gametes via homologous recombination. Meiotic homologous recombination entails repairing programmed 200-300 DNA double-strand breaks generated during the early prophase. To avoid interference between meiotic gene transcription and homologous recombination, mammalian meiosis is thought to employ a strategy of exclusively transcribing meiotic or post-meiotic genes before their use.

View Article and Find Full Text PDF
Article Synopsis
  • In some animals, a protein called PRDM9 helps determine where genetic mixing, or recombination, happens during reproduction.
  • Some mice and other animals can still have babies even if they don't have PRDM9, which is surprising.
  • Scientists found that certain genetic traits and a protein called CHK2 help female mice stay fertile without PRDM9, showing that there are special rules for how males and females reproduce.
View Article and Find Full Text PDF

Androgen receptor (AR) signaling in Sertoli cells is known to be important for germ-cell progression through meiosis, but the extent to which androgens indirectly regulate specific meiotic stages is not known. Here, we combine synchronization of spermatogenesis, cytological analyses and single-cell RNAseq (scRNAseq) in the ertoli-ell ndrogen eceptor nockut (SCARKO) mutant and control mice, and demonstrate that SCARKO mutant spermatocytes exhibited normal expression and localization of key protein markers of meiotic prophase events, indicating that initiation of meiotic prophase is not androgen dependent. However, spermatocytes from SCARKO testes failed to acquire competence for the meiotic division phase.

View Article and Find Full Text PDF

Hybrid male sterility (HMS) contributes to reproductive isolation commonly observed among house mouse () subspecies, both in the wild and in laboratory crosses. Incompatibilities involving specific alleles and certain Chromosome (Chr) X genotypes are known determinants of fertility and HMS, and previous work in the field has demonstrated that genetic background modifies these two major loci. We constructed hybrids that have identical genotypes at and identical X chromosomes, but differ widely across the rest of the genome.

View Article and Find Full Text PDF
Article Synopsis
  • - Meiotic recombination is crucial for the correct distribution of chromosomes during gamete formation and for enhancing genetic diversity, where DNA double-strand breaks (DSBs) are initiated by the protein SPO11 at specific regions called recombination hotspots influenced by PRDM9.
  • - STAG3, a component of meiosis-specific cohesin complexes, is key for proper axis formation and DSB initiation; mutations in STAG3 disrupt these processes, revealing its role in linking chromosome structure and recombination mechanisms.
  • - PRDM9 interacts with STAG3 and another protein, REC8, to promote DSB formation, while STAG3 also affects DSB numbers independently of PRDM9, highlighting the coordinated role of these proteins
View Article and Find Full Text PDF

Given attention to both contraception and treatment of infertility, there is a need to identify genes and sequence variants required for mammalian fertility. Recent unbiased mutagenesis strategies have expanded horizons of genetic control of reproduction. Here we show that male mice homozygous for the ethyl-nitroso-urea-induced ferf1 (fertilization failure 1) mutation are infertile, producing apparently normal sperm that does not fertilize oocytes in standard fertilization in vitro fertilization assays.

View Article and Find Full Text PDF

Cell differentiation is driven by changes in gene expression that manifest as changes in cellular phenotype or function. Altered cellular phenotypes, stemming from genetic mutations or other perturbations, are widely assumed to directly correspond to changes in the transcriptome and vice versa. Here, we exploited the cytologically well-defined Prdm9 mutant mouse as a model of developmental arrest to test whether parallel programs of cellular differentiation and gene expression are tightly coordinated, or can be disassociated.

View Article and Find Full Text PDF

Although organisms belonging to different species and subspecies sometimes produce fertile offspring, a hallmark of the speciation process is reproductive isolation, characterized by hybrid sterility (HS) due to failure in gametogenesis. In mammals, HS is usually exhibited by males, the heterogametic sex. The phenotypic manifestations of HS are complex.

View Article and Find Full Text PDF

Gene mutations, including different alleles of the same gene, are tremendously useful in deconstructing complex developmental systems, such as reproduction, into component molecular pathways. For this reason, great effort has been devoted in the past three decades to biased (reverse genetic) and unbiased (forward genetic) searches for new genes that impact mammalian reproduction and fertility. These efforts have more recently been complemented with international efforts to systematically mutate all mouse genes and to determine their phenotypes (essentially a hybrid of forward and reverse genetics).

View Article and Find Full Text PDF

Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 4G (EIF4G) is an important scaffold protein in the translation initiation complex. In mice, mutation of the Eif4g3 gene causes male infertility, with arrest of meiosis at the end of meiotic prophase. This study documents features of the developmental expression and subcellular localization of EIF4G3 that might contribute to its highly specific role in meiosis and spermatogenesis.

View Article and Find Full Text PDF

SMC complexes include three major classes: cohesin, condensin and SMC5/6. However, the localization pattern and genetic requirements for the SMC5/6 complex during mammalian oogenesis have not previously been examined. In mouse oocytes, the SMC5/6 complex is enriched at the pericentromeric heterochromatin, and also localizes along chromosome arms during meiosis.

View Article and Find Full Text PDF

Background: The continuous and non-synchronous nature of postnatal male germ-cell development has impeded stage-specific resolution of molecular events of mammalian meiotic prophase in the testis. Here the juvenile onset of spermatogenesis in mice is analyzed by combining cytological and transcriptomic data in a novel computational analysis that allows decomposition of the transcriptional programs of spermatogonia and meiotic prophase substages.

Results: Germ cells from testes of individual mice were obtained at two-day intervals from 8 to 18 days post-partum (dpp), prepared as surface-spread chromatin and immunolabeled for meiotic stage-specific protein markers (STRA8, SYCP3, phosphorylated H2AFX, and HISTH1T).

View Article and Find Full Text PDF

Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50-80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells.

View Article and Find Full Text PDF

Background: Genetic recombination plays an important role in evolution, facilitating the creation of new, favorable combinations of alleles and the removal of deleterious mutations by unlinking them from surrounding sequences. In most mammals, the placement of genetic crossovers is determined by the binding of PRDM9, a highly polymorphic protein with a long zinc finger array, to its cognate binding sites. It is one of over 800 genes encoding proteins with zinc finger domains in the human genome.

View Article and Find Full Text PDF

Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics.

View Article and Find Full Text PDF

The ENU-induced repro57 mutation was identified in an unbiased screen for the discovery of novel genes for fertility. Male repro57 homozygous mice are infertile and exhibit significantly reduced testis weight compared with WT mice. Histological examination of mutant testes revealed that spermatocytes degenerated during late prophase, and no mature spermatozoa were found in the seminiferous epithelium, suggesting that infertility is caused by the arrest of spermatogenesis at late meiotic prophase.

View Article and Find Full Text PDF

Germ cells are the ultimate stem cells, and reports of their in vitro derivation generate excitement due to potential applications in reproductive medicine. To date, there is no firm evidence that meiosis, the hallmark of gametogenesis, can be faithfully replicated outside of the gonad. We propose benchmarks for evaluating in vitro derivation of germ cells, facilitating realization of their potential.

View Article and Find Full Text PDF

Meiotic recombination enables the reciprocal exchange of genetic material between parental homologous chromosomes, and ensures faithful chromosome segregation during meiosis in sexually reproducing organisms. This process relies on the complex interaction of DNA repair factors and many steps remain poorly understood in mammals. Here we report the identification of MEIOB, a meiosis-specific protein, in a proteomics screen for novel meiotic chromatin-associated proteins in mice.

View Article and Find Full Text PDF

Four members of the structural maintenance of chromosome (SMC) protein family have essential functions in chromosome condensation (SMC2/4) and sister-chromatid cohesion (SMC1/3). The SMC5/6 complex has been implicated in chromosome replication, DNA repair and chromosome segregation in somatic cells, but its possible functions during mammalian meiosis are unknown. Here, we show in mouse spermatocytes that SMC5 and SMC6 are located at the central region of the synaptonemal complex from zygotene until diplotene.

View Article and Find Full Text PDF