Publications by authors named "Mary Ann Greco"

Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33%) and without (67%) markers of recent streptococcal infections [anti-Streptolysin O (ASLO) or anti-DNAse B (ADB)]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI), an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects.

View Article and Find Full Text PDF

Age-related changes in brain function include those affecting learning, memory, and sleep-wakefulness. Sleep-wakefulness is an essential behavior that results from the interaction of multiple brain regions, peptides, and neurotransmitters. The biological function(s) of sleep, however, remains unknown due to a paucity of information available at the cellular level.

View Article and Find Full Text PDF

Existing data indicate that sleep-wakefulness is an essential behavior. The biological function(s) of sleep, however, remains unknown, due, in part, to the lack of information available at the intracellular level. Preliminary microarray analyses show that changes in behavioral state influence regional mRNA profiles; however, the impact of sleep on protein signatures is virtually unexplored.

View Article and Find Full Text PDF

Although opioids are known to influence sleep-wake regulation, the neuroanatomic substrate(s) mediating these effects remain unresolved. We hypothesized that the influence of opiates on sleep may be mediated, at least in part, by the ventrolateral preoptic nucleus (VLPO), a key cell group for producing behavioral sleep. By combining in situ hybridization for kappa and mu receptor mRNA with immunostaining of Fos expressed by VLPO cells during sleep we show that >85% of sleep-active VLPO neurons contain mRNA for either or both opioid receptors.

View Article and Find Full Text PDF

Early in the twentieth century, von Economo provided the first evidence linking the hypothalamus with sleep-wake behavior. His studies concluded that the anterior hypothalamus was associated with sleep, whereas the posterior hypothalamus was associated with waking. In the decades following these observations, a wealth of research has shown that an elaborate circuitry comprising a number of brain regions, cell types, and extracellular messengers underlies sleep-wake behavior.

View Article and Find Full Text PDF