Premise Of The Study: We used spatial phylogenetics to analyze the assembly of the Wisconsin flora, linking processes of dispersal and niche evolution to spatial patterns of floristic and phylogenetic diversity and testing whether phylogenetic niche conservatism can account for these patterns.
Methods: We used digitized records and a new molecular phylogeny for 93% of vascular plants in Wisconsin to estimate spatial variation in species richness and phylogenetic α and β diversity in a native flora shaped mainly by postglacial dispersal and response to environmental gradients. We developed distribution models for all species and used these to infer fine-scale variation in potential diversity, phylogenetic distance, and interspecific range overlaps.
Areas of endemism are essential first hypotheses in investigating historical biogeography, but there is a surprising paucity of such hypotheses for the Nearctic region. Miridae, the plant bugs, are an excellent taxon to study in this context, because this group combines high species diversity, often small distribution ranges, a history of modern taxonomic revisions, and comprehensive electronic data capture and data cleaning that have resulted in an exceptionally error-free geospatial data set. Many Miridae are phytophagous and feed on only one or a small number of host plant species.
View Article and Find Full Text PDFReciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers.
View Article and Find Full Text PDF