Publications by authors named "Mary Ann Caplen"

A scaffold hopping strategy was successfully applied in discovering 2-aminooxazole amides as potent DGAT1 inhibitors for the treatment of dyslipidemia. Further optimization in potency and PK properties resulted in a lead series with oral in vivo efficacy in a mouse postprandial triglyceridemia (PPTG) assay.

View Article and Find Full Text PDF

Biaryl urea lead compound 1 was discovered earlier in our MCH antagonist program. Novel benzimidazole analogues with increased chemical stability, devoid of the potential carcinogenic liability associated with a biarylamine moiety, were synthesized and evaluated to be potent MCH R1 antagonists. Two compounds in this series have demonstrated in vivo efficacy in a rodent obesity model.

View Article and Find Full Text PDF

A series of aminoalkylazetidines has been discovered as novel ORL1 receptor ligands. Structure-activity relationships have been investigated at the azetidine N and the alkyl side chain sites. Several potent and selective analogues have been identified.

View Article and Find Full Text PDF

The molecular mechanisms of cholesterol absorption in the intestine are poorly understood. With the goal of defining candidate genes involved in these processes a fluorescence-activated cell sorter-based, retroviral-mediated expression cloning strategy has been devised. SCH354909, a fluorescent derivative of ezetimibe, a compound which blocks intestinal cholesterol absorption but whose mechanism of action is unknown, was synthesized and shown to block intestinal cholesterol absorption in rats.

View Article and Find Full Text PDF

Fluorescent analogues of the cholesterol absorption inhibitor (CAI), Sch 58235, have been designed and synthesized as single enantiomers. Biological testing reveals that they are potent CAIs and are suitable tools for the investigation of the azetidinone CAI mechanism of action (MOA).

View Article and Find Full Text PDF

The discoveries of Sch 48461 and Sch 58235 and their novel pharmacology of inhibition of cholesterol absorption have prompted efforts to determine their biological mechanism of action (MOA). To this end, a series of radioiodinated analogues with good to excellent in vivo activity have been designed and synthesized as single enantiomers. They are structurally consistent with the allowable SAR of the 2-azetidinone class of cholesterol absorption inhibitors.

View Article and Find Full Text PDF