Salt marshes play an important role in the global nutrient cycle. The sediments in these systems harbor diverse and complex bacterial communities possessing metabolic capacities that provide ecosystem services such as nutrient cycling and removal. On the East Coast of the USA, salt marshes have been experiencing degradation due to anthropogenic stressors.
View Article and Find Full Text PDFAnthropogenic disturbances may be increasing jellyfish populations globally. Epibenthic jellyfish are ideal organisms for studying this phenomenon due to their sessile lifestyle, broad geographic distribution, and prevalence in near-shore coastal environments. There are few studies, however, that have documented epibenthic jellyfish abundance and measured their impact on ecological processes in tropical ecosystems.
View Article and Find Full Text PDFHuman activity is accelerating changes in biotic communities worldwide. Predicting impacts of these changes on ecosystem services such as denitrification, a process that mitigates the consequences of nitrogen pollution, remains one of the most important challenges facing ecologists. Wetlands especially are valued as important sites of denitrification, and wetland plants are expected to have differing effects on denitrification.
View Article and Find Full Text PDFEstablishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification.
View Article and Find Full Text PDF