Circulating tumor cells (CTCs) are vital components of liquid biopsies for diagnosis of residual cancer, monitoring of therapy response, and prognosis of recurrence. Scientific dogma focuses on metastasis mediated by single CTCs, but advancement of CTC detection technologies has elucidated multicellular CTC clusters, which are associated with unfavorable clinical outcomes and a 20- to 100-fold greater metastatic potential than single CTCs. While the mechanistic understanding of CTC cluster formation is still in its infancy, multiple cell adhesion molecules and tight junction proteins have been identified that underlie the outperforming attributes of homotypic and heterotypic CTC clusters, such as cell survival, cancer stemness, and immune evasion.
View Article and Find Full Text PDFClimate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows.
View Article and Find Full Text PDFIn July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2009
Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg degrees ) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland.
View Article and Find Full Text PDF