Publications by authors named "Mary A Garner"

NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown.

View Article and Find Full Text PDF

Purpose: To examine deformations of the optic nerve head (ONH) deep tissues in response to acute elevation of intraocular pressure (IOP).

Methods: Research-consented brain-dead organ donors underwent imaging by spectral domain optical coherence tomography (OCT). OCT imaging was repeated while the eye was sequentially maintained at manometric pressures of 10, 30, and 50 mm Hg.

View Article and Find Full Text PDF

Unlabelled: NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how elevated intraocular pressure (IOP) affects ocular perfusion pressure (OPP), retinal blood flow, and electrical responses in the human eye, which was previously studied mainly in animal models.
  • Five eyes from brain-dead organ donors were tested using optical coherence tomography and electroretinography as IOP was increased to different levels, while blood pressure was monitored.
  • Results showed that higher IOP led to decreased retinal function and perfusion, especially with lower systemic blood pressure, indicating that IOP elevation has significant effects on retinal health in humans.
View Article and Find Full Text PDF

The maintenance of intraocular pressure (IOP) is critical to preserving the pristine optics required for vision. Disturbances in IOP can directly impact the optic nerve and retina, and inner retinal injury can occur following acute and chronic IOP elevation. There are a variety of animal models that have been developed to study the effects of acute and chronic elevation of IOP on the retina, retinal ganglion cell (RGC) morphology, intracellular signaling, gene expression changes, and survival.

View Article and Find Full Text PDF

Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration.

View Article and Find Full Text PDF

When replete with zinc and copper, amyotrophic lateral sclerosis (ALS)-associated mutant SOD proteins can protect motor neurons in culture from trophic factor deprivation as efficiently as wild-type SOD. However, the removal of zinc from either mutant or wild-type SOD results in apoptosis of motor neurons through a copper- and peroxynitrite-dependent mechanism. It has also been shown that motor neurons isolated from transgenic mice expressing mutant SODs survive well in culture but undergo apoptosis when exposed to nitric oxide via a Fas-dependent mechanism.

View Article and Find Full Text PDF

Although peroxynitrite stimulates apoptosis in many cell types, whether peroxynitrite acts directly as an oxidant or the induction of apoptosis is because of the radicals derived from peroxynitrite decomposition remains unknown. Before undergoing apoptosis because of trophic factor deprivation, primary motor neuron cultures become immunoreactive for nitrotyrosine. We show here using tyrosine-containing peptides that free radical processes mediated by peroxynitrite decomposition products were required for triggering apoptosis in primary motor neurons and in PC12 cells cultures.

View Article and Find Full Text PDF