Publications by authors named "Marwan Y Rezk"

The present research is primarily focused on investigating the characteristics of environmentally persistent free radicals (EPFRs) generated from commonly recognized aromatic precursors, namely, 1,2-dichlorobenzene (DCB) and 2-monochlorophenol (MCP), within controlled laboratory conditions at a temperature of 230 °C, termed as DCB230 and MCP230 EPFRs, respectively. An intriguing observation has emerged during the creation of EPFRs from MCP and DCB utilizing a catalyst 5% CuO/SiO, which was prepared through various methods. A previously proposed mechanism, advanced by Dellinger and colleagues (a conventional model), postulated a positive correlation between the degree of hydroxylation on the catalyst's surface (higher hydroxylated, HH and less hydroxylated, LH) and the anticipated EPFR yields.

View Article and Find Full Text PDF

The detection of carbon dioxide (CO) is critical for environmental monitoring, chemical safety control, and many industrial applications. The manifold application fields as well as the huge range of CO concentration to be measured make CO sensing a challenging task. Thus, the ability to reliably and quantitatively detect carbon dioxide requires vastly improved materials and approaches that can work under different environmental conditions.

View Article and Find Full Text PDF

Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effects on different diseases. Herein, we report on the optimum fabrication of electrospun CS/PVA coaxial, core/shell, and uniaxial nanofibers.

View Article and Find Full Text PDF

The use of titanium dioxide nanotubes in the powder form (TNTP) has been a hot topic for the past few decades in many applications. The high quality of the fabricated TNTP by various synthetic routes may meet the required threshold of performance in a plethora of fields such as drug delivery, sensors, supercapacitors, and photocatalytic applications. This review briefly discusses the synthesis techniques of TNTP, their use in various applications, and future perspectives to expand their use in more applications.

View Article and Find Full Text PDF

ZnO nanostructures (NS)/guar gum (GG) nanocomposites have been successfully synthesized and tested as sorbents for photodegradation, adsorption and antimicrobial activity for dye removal. The addition of ZnO improves the thermal stability of GG based on the ratio of the oxygen in the OH form and the total oxygen in the samples as indicated via XPS and FTIR analyses. Among all tested composites, the ZnO NPs/GG nanocomposite showed the highest photocatalytic activity and hence used in extended adsorption and degradation studies against the anionic dye reactive red (RR195) and the cationic dye Rhodamine B (RhB).

View Article and Find Full Text PDF