The expression of homosynaptic long-term depression (LTD) governs the subsequent induction of long-term potentiation (LTP) at hippocampal synapses. This process, called metaplasticity, is associated with a transient increase in the levels of several kinases, such as extracellular signal-regulated protein kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and Akt kinase. It has been increasingly realized that the chemical changes in the hippocampus caused by hypothyroidism may be the key underlying causes of the learning deficits, memory loss, and impaired LTP associated with this disease.
View Article and Find Full Text PDFClin Psychopharmacol Neurosci
May 2019
Objective: Although, accumulating evidence is delineating a neuroprotective and neurotrophic role for lithium (Li), inconsistent findings have also been reported in human studies especially. Moreover, the effects of Li infusion into the hippocampus are still unknown. The aims of this work were (a) to assess whether basal synaptic activity and long-term potentiation (LTP) in the hippocampus are different in regard to intrahippocampal Li infusion; (b) to assess spatial learning and memory in rats chronically treated with LiCO in the Morris water maze.
View Article and Find Full Text PDFAmong the chemical factors that have been implicated in the etiology of dementia, recent concern has focused on both increased and decreased exposure to the metalloid selenium (Se). This report describes the molecular, behavioral, and electrophysiological analysis of rats that were fed with Se-free chow and Se-enriched tap water for 21 days. Three groups were produced, feeding them on a deficient diet with different Selenium content.
View Article and Find Full Text PDFIt is well-known that some kinases which are involved in the induction of synaptic plasticity probably modulate tau phosphorylation. However, how depression of potentiated synaptic strength contributes to tau phosphorylation is unclear because of the lack of experiments in which depotentiation of LTP was induced. Field excitatory postsynaptic potential (fEPSP) and population spike (PS) were recorded from the dentate gyrus in response to the perforant pathway stimulation.
View Article and Find Full Text PDFAlthough the effects of long-term experimental dysthyroidism on long-term potentiation (LTP) and long-term depression (LTD) have been documented, the relationship between LTP/LTD and acute administration of L-thyroxine (T4) has not been described. Here, we investigated the effects of intra-hippocampal administration of T4 on synaptic plasticity in the dentate gyrus of the hippocampal formation. After a 15-minute baseline recording, LTP and LTD were induced by application of high- and low-frequency stimulation protocols, respectively.
View Article and Find Full Text PDF