Publications by authors named "Marwa M Abdelkareem"

Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.

View Article and Find Full Text PDF

Background: Biotransformation of steroid compounds into therapeutic products using microorganisms offers an eco-friendly and economically sustainable approach to the pharmaceutical industry rather than a chemical synthesis way. The biotransformation efficiency of progesterone into the anticancer compound testololactone using Penicillium chrysogenum Ras3009 has been investigated. Besides, maximization of testololactone formation was achieved by studying the kinetic modelling and impact of some fermentation conditions on the biotransformation process.

View Article and Find Full Text PDF

Objectives: To evaluate echocardiographic parameters, especially the Tei index as a predictor of outcome in critically ill children on continuous renal replacement therapy (CRRT).

Methods: This cohort study included all critically ill patients admitted at the Pediatric intensive care unit (PICU) and underwent CRRT. Functional echocardiography and Pediatric Risk of Mortality Index (PRISM) III were used to evaluate the participants.

View Article and Find Full Text PDF

The biosynthesis of silver nanoparticles (Ag NPs) could play a significant role in the development of commercial antimicrobials. Herein, the biosynthesis of Ag NPs was studied using the edible mushroom and following its formation, spectrophotometry was used to detect the best mushroom content, pH, temperature, and silver concentration. After that, the morphology was described via transmission electron microscopy (TEM), and nanoscale-size particles were found ranging from 11 to 13 nm.

View Article and Find Full Text PDF