Objective: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment.
Methods: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13).
Introduction: Newcastle disease virus (NDV) AMHA1 is capable of killing cancer cells by direct replication or induction of apoptosis alongside other pathways. In this study, we report the potent antimetastatic and anticancer activities of NDV AMHA1 in a 3D spheroid model of breast cancer metastasis.
Methods: we used two breast cancer cell lines AMJ13 and MCF7 in our metastasis model system.
Objective: Breast cancer is one of the most widespread tumors among women worldwide, which is difficult to treat due to the presence of chemoresistance and the risk of tumor recurrence and metastasis. There is a pressing necessity to develop efficient treatments to improve response for treatment and increase prolong survival of breast cancer patients. Photodynamic therapy (PDT) has attracted interest for its features as a noninvasive and relatively selective cancer treatment.
View Article and Find Full Text PDFOncolytic virotherapy is one of the emerging biological therapeutics that needs a more efficient tumor model to overcome the two-dimensional (2D) monolayer tumor cell culture model's inability to maintain tissue-specific structure. This is to offer significant prognostic preclinical assessment findings. One of the best models that can mimic the model are the three-dimensional (3D) tumor-normal cell coculture systems, which can be employed in preclinical oncolytic virus therapeutics.
View Article and Find Full Text PDF