Deciphering absolute configuration of a single molecule by direct visual inspection is the next step in compound identification, with far-reaching implications for medicinal chemistry, pharmacology, and natural product synthesis. We demonstrate the feasibility of this approach utilizing low temperature atomic force microscopy (AFM) with a CO-functionalized tip to determine the absolute configuration and orientation of a single, adsorbed [123]tetramantane molecule, the smallest chiral diamondoid. We differentiate between single enantiomers on Cu(111) by direct visual inspection, and furthermore identify molecular dimers and molecular clusters.
View Article and Find Full Text PDFLondon dispersion (LD) acts between all atoms and molecules in nature, but the role of LD interactions in the self-assembly of molecular layers is still poorly understood. In this study, direct visualization of single molecules using atomic force microscopy with CO-functionalized tips revealed the exact adsorption structures of bulky and highly polarizable [121]tetramantane molecules on Au(111) and Cu(111) surfaces. We determined the absolute molecular orientations of the completely sp-hybridized tetramantanes on metal surfaces.
View Article and Find Full Text PDFQuartz tuning forks are being increasingly employed as sensors in non-contact atomic force microscopy especially in the "qPlus" design. In this study a new and easily applicable setup has been used to determine the static spring constant at several positions along the prong of the tuning fork. The results show a significant deviation from values calculated with the beam formula.
View Article and Find Full Text PDF