Pore engineering is commonly used to alter the properties of metal-organic frameworks. This is achieved by incorporating different linker molecules () into the structure, generating isoreticular frameworks. CPO-27, also named MOF-74, is a prototypical material for this approach, offering the potential to modify the size of its one-dimensional pore channels and the hydrophobicity of pore walls using various linker ligands during synthesis.
View Article and Find Full Text PDFStimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology.
View Article and Find Full Text PDFA series of seven homoleptic Cu complexes based on hetero-bidentate P^N ligands was synthesized and comprehensively characterized. In order to study structure-property relationships, the type, size, number and configuration of substituents at the phosphinooxazoline (phox) ligands were systematically varied. To this end, a combination of X-ray diffraction, NMR spectroscopy, steady-state absorption and emission spectroscopy, time-resolved emission spectroscopy, quenching experiments and cyclic voltammetry was used to assess the photophysical and electrochemical properties.
View Article and Find Full Text PDFPorous glasses from metal-organic frameworks (MOFs) represent a new class of functional inorganic-organic materials, which have been proposed for applications ranging from solid electrolytes to radioactive waste storage. So far, just a few zeolitic imidazolate frameworks (ZIFs), a subset of MOFs, have been reported to melt and the structural and compositional requirements for MOF melting and glass formation are poorly understood. Here, we show how the melting point of the prototypical ZIF-4/ZIF-62(M) frameworks (composition M(im)(bim); M = Co, Zn; im = imidazolate; bim = benzimidazolate) can be controlled systematically by adjusting the molar ratio of the two imidazolate-type linkers im and bim.
View Article and Find Full Text PDF