Cholesterol (chol)-lipid interactions are thought to play an intrinsic role in determining lateral organization within cellular membranes. Steric compatibility of the rigid steroid moiety for ordered saturated chains contributes to the high affinity that holds chol and sphingomyelin together in lipid rafts whereas, conversely, poor affinity of the sterol for highly disordered polyunsaturated fatty acids (PUFAs) is hypothesized to drive the formation of PUFA-containing phospholipid domains depleted in chol. Here, we describe a novel method using electron paramagnetic resonance (EPR) to measure the relative affinity of chol for different phospholipids.
View Article and Find Full Text PDFAims: This study investigates the effect of local mechanical stimulation induced by pressure or flow-overload in right coronary artery (RCA) angiotensin II type 1 (AT1) receptor-mediated endothelial dysfunction in swine models of aortic or pulmonary artery banding.
Methods And Results: A total of 36 pigs (37 ± 7 kg) were studied. The RCA was exposed to pressure-overload by aortic banding (n = 6) or blood flow-overload by pulmonary artery banding (n = 6) for 4 weeks, and sham-operated animals served as controls (n = 6).
Remodeling of right coronary artery (RCA) occurs during right ventricular hypertrophy (RVH) induced by banding of the pulmonary artery (PA). The effect of RVH on RCA endothelial function and reactive oxygen species (ROS) in vessel wall remains unclear. A swine RVH model (n = 12 pigs) induced by PA banding was used to study RCA endothelial function and ROS level.
View Article and Find Full Text PDF