Pathogenic variations in the fused in sarcoma () gene are associated with rare and aggressive forms of amyotrophic lateral sclerosis (ALS). As FUS-ALS is a dominant disease, a targeted, allele-selective approach to knockdown is most suitable. Antisense oligonucleotides (AOs) are a promising therapeutic platform for treating such diseases.
View Article and Find Full Text PDFAberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated or mutated splicing factors, or genetic alterations in splicing-regulatory -elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed.
View Article and Find Full Text PDFPhosphorodiamidate morpholinos (PMOs) are known as premier gene knockdown tools in developmental biology. PMOs are usually 25 nucleo-base-long morpholino subunits with a neutral phosphorodiamidate linkage. PMOs work via a steric blocking mechanism and are stable towards nucleases' inside cells.
View Article and Find Full Text PDFNonsense-mediated RNA decay (NMD) degrades transcripts carrying premature termination codons. NMD is thought to prevent the synthesis of toxic truncated proteins. However, whether loss of NMD results in widespread production of truncated proteins is unclear.
View Article and Find Full Text PDFRecent advances in drug development have seen numerous successful clinical translations using synthetic antisense oligonucleotides (ASOs). However, major obstacles, such as challenging large-scale production, toxicity, localization of oligonucleotides in specific cellular compartments or tissues, and the high cost of treatment, need to be addressed. Thiomorpholino oligonucleotides (TMOs) are a recently developed novel nucleic acid analog that may potentially address these issues.
View Article and Find Full Text PDFThe spatial partitioning of the transcriptome in the cell is an important form of gene-expression regulation. Here, we address how intron retention influences the spatio-temporal dynamics of transcripts from two clinically relevant genes: TERT (Telomerase Reverse Transcriptase) pre-mRNA and TUG1 (Taurine-Upregulated Gene 1) lncRNA. Single molecule RNA FISH reveals that nuclear TERT transcripts uniformly and robustly retain specific introns.
View Article and Find Full Text PDFChemically modified oligonucleotides are being developed as a new class of medicines for curing conditions that previously remained untreatable. Three primary classes of therapeutic oligonucleotides are single-stranded antisense oligonucleotides (ASOs), double stranded small interfering RNAs (siRNAs), and oligonucleotides that induce exon skipping. Recently, ASOs, siRNAs, and exon skipping oligonucleotides have been approved for patients with unmet medical needs, and many other candidates are being tested in late stage clinical trials.
View Article and Find Full Text PDFThis Article outlines the optimized chemical synthesis and preliminary biochemical characterization of a new oligonucleotide analogue called thiophosphoramidate morpholinos (TMOs). Their rational design hinges upon integrating two well-studied pharmacophores, namely, phosphorothioates (pS) and morpholinos, to create morpholino-pS hybrid oligonucleotides. Our simple synthesis strategy enables the easy incorporation of morpholino-pS moieties and therapeutically relevant sugar modifications in tandem to create novel oligonucleotide (ON) analogues that are hitherto unexplored in the oligotherapeutics arena.
View Article and Find Full Text PDFMorpholinos are six-membered rings that may provide higher conformational rigidity when incorporated into an oligonucleotide (ODN) backbone. Phosphorodiamidate morpholinos are chemically modified ODNs containing morpholinos in place of 2'-deoxyribose moieties throughout their backbone and have garnered much interest in recent years due to their ability to function as highly effective steric blockers in exon skipping therapy. To further explore the biophysical and biological properties of ODNs derived from morpholino nucleosides, we have replaced the 2'-deoxyribonucleotides of phosphodiester DNA with morpholinonucleotides to generate phosphoramidate ODNs.
View Article and Find Full Text PDFIncorporation in a 2'→5' direction of a phosphorodiamidite 2'-amino-LNA-T nucleotide as the morpholino phosphoramidate and N,N-dimethylamino phosphorodiamidate monomers into six oligonucleotides is reported. Thermal denaturation studies showed that the novel 2'-amino-LNA-based morpholino monomers exert a destabilizing effects on duplexes formed with complementary DNA and RNA.
View Article and Find Full Text PDFSmall molecule/DNA hybrids (SMDHs) have been considered as nanoscale building blocks for engineering 2D and 3D supramolecular DNA assembly. Herein, we report an efficient on-bead amide-coupling approach to prepare SMDHs with multiple oligodeoxynucleotide (ODN) strands. Our method is high yielding under mild and user-friendly conditions with various organic substrates and homo- or mixed-sequenced ODNs.
View Article and Find Full Text PDFThe synthesis of previously unknown derivatives of boranephosphonate that contain amine substitutions at boron and the incorporation of these derivatives into the backbone of DNA oligonucleotides is described. These derivatives result from iodine-mediated replacement of one BH hydride of a boranephosphonate linkage by pyridine, various substituted pyridines, other aromatic amines, and certain unsaturated amines. Oligonucleotides containing these backbone modifications show enhanced uptake, relative to unmodified DNA, in mammalian cells.
View Article and Find Full Text PDFPhosphorodiamidate morpholinos (PMOs) and PMO-DNA chimeras have been prepared on DNA synthesizers using phosphoramidite chemistry. This was possible by first generating boranephosphoroamidate morpholino internucleotide linkages followed by oxidative substitution with four different amines: N,N-dimethylamine, N-methylamine, ammonia, and morpholine. When compared to a natural DNA duplex, the amino modified PMO was found to have a higher melting temperature with either complementary DNA or RNA, whereas the remaining PMO analogues having morpholino, dimethylamino, or N-methylamino phosphorodiamidate linkages had melting temperatures that were either comparable or reduced.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2021
Chemically modified oligodeoxynucleotides (ODNs) are known to modulate gene expression by interacting with RNA. An efficient approach for synthesizing amino acid- or peptide-substituted triazolylphosphonate analogs (TP ODNs) has been developed to provide improved stability and cell uptake. The chemistry is quite general, as peptides can be introduced throughout the TP ODN at any preselected internucleotide linkage.
View Article and Find Full Text PDFOptimizing oligonucleotides as therapeutics will require exploring how chemistry can be used to enhance their effects inside cells. To achieve this goal it will be necessary to fully explore chemical space around the native DNA/RNA framework to define the potential of diverse chemical modifications. In this report we examine the potential of thiophosphonoacetate (thioPACE)-modified 2'-O-methyl oligoribonucleotides as inhibitors of human huntingtin (HTT) expression.
View Article and Find Full Text PDFAnalogues of oligonucleotides and mononucleotides with hydrophobic and/or cationic phophotriester functionalities often generate an improvement in target affinity and cellular uptake. Here we report the synthesis of phosphotriester oligodeoxyribonucleotides (ODNs) that are stable to the conditions used for their preparation. The method has been demonstrated by introducing phosphoramidite synthons where N-benzyloxycarbonyl (Z) protected amino alcohols replace the cyanoethyl group.
View Article and Find Full Text PDFWe investigate the efficiency of incorporation of boranephosphonate-modified nucleotides by phi29 DNA polymerase and present a simple method for forming large defined silver nanostructures by rolling circle amplification (RCA) using boranephosphonate internucleotide linkages. RCA is a linear DNA amplification technique that can use specifically circularized DNA probes for detection of target nucleic acids and proteins. The resulting product is a collapsed single-stranded DNA molecule with tandem repeats of the DNA probe.
View Article and Find Full Text PDFThe introduction of modifications into oligonucleotides is important for a large number of applications in the nucleic acids field. However, the method of solid-phase DNA synthesis presents significant challenges for incorporating many useful modifications that are unstable to the conditions for preparing synthetic DNA. Here we report that boranephosphonate diesters undergo facile nucleophilic substitution in a stereospecific manner upon activation by iodine.
View Article and Find Full Text PDF