The application of machine learning models in chemistry has made remarkable strides in recent years. While analytical chemistry has received considerable interest from machine learning practitioners, its adoption into everyday use remains limited. Among the available analytical methods, Infrared (IR) spectroscopy stands out in terms of affordability, simplicity, and accessibility.
View Article and Find Full Text PDFComputer-aided synthesis design, automation, and analytics assisted by machine learning are promising resources in the researcher's toolkit. Each component may alleviate the chemist from routine tasks, provide valuable insights from data, and enable more informed experimental design. Herein, we highlight selected works in the field and discuss the different approaches and the problems to which they may apply.
View Article and Find Full Text PDF