Publications by authors named "Marvin A Albao"

The abounding possibilities of discovering novel materials has driven enhanced research effort in the field of materials physics. Only recently, the quantum anomalous hall effect (QAHE) was realized in magnetic topological insulators (TIs) albeit existing at extremely low temperatures. Here, we predict that MPn (M =Ti, Zr, and Hf; Pn =Sb and Bi) honeycombs are capable of possessing QAH insulating phases based on first-principles electronic structure calculations.

View Article and Find Full Text PDF

The dynamic scaling of the island size distribution (ISD) in the submonolayer growth regime of low-dimensional nanostructured systems is a long standing problem in epitaxial growth. In this study, kinetic Monte Carlo simulations of a realistic atomistic lattice-gas model describing the one-dimensional nucleation and growth of Al on Si(100):2×1 were performed to investigate the scaling behavior under varied growth conditions. Consistent with previous predictions, our results show that the shape of the scaled island size distribution can be altered by controlling the temperature and the C-defect density.

View Article and Find Full Text PDF

A large gap two-dimensional (2D) topological insulator (TI), also known as a quantum spin Hall (QSH) insulator, is highly desirable for low-power-consuming electronic devices owing to its spin-polarized backscattering-free edge conducting channels. Although many freestanding films have been predicted to harbor the QSH phase, band topology of a film can be modified substantially when it is placed or grown on a substrate, making the materials realization of a 2D TI challenging. Here we report a first-principles study of possible QSH phases in 75 binary combinations of group III (B, Al, Ga, In, and Tl) and group V (N, P, As, Sb, and Bi) elements in the 2D buckled honeycomb structure, including hydrogenation on one or both sides of the films to simulate substrate effects.

View Article and Find Full Text PDF

We have systematically investigated the effect of hydrogen adsorption on a single BC₃ sheet as well as graphene using first-principles calculations. Specifically, a comparative study of the energetically favorable atomic configurations for both H-adsorbed BC₃ sheets and graphene at different hydrogen concentrations ranging from 1/32 to 4/32 ML and 1/8 to 1 ML was undertaken. The preferred hydrogen arrangement on the single BC₃ sheet and graphene was found to have the same property as that of the adsorbed H atoms on the neighboring C atoms on the opposite sides of the sheet.

View Article and Find Full Text PDF

Deposition on a Si(100) surface and subsequent self-assembly of In atoms into one-dimensional (1D) atomic chains at room temperature is investigated via kinetic Monte Carlo simulation of a suitable atomistic model. Model development is guided by recent experimental observations in which 1D In chains nucleate effectively exclusively at C-type defects, although In atoms can detach from chains. We find that a monotonically decreasing form of the scaled island size distribution (ISD) is consistent with a high defect density which facilitates persistent chain nucleation even at relatively high coverages.

View Article and Find Full Text PDF

The structures of AgSi(n) (n=1-13) clusters are investigated using first-principles calculations. Our studies suggest that AgSi(n) clusters with n=7 and 10 are relatively stable isomers and that these clusters prefer to be exohedral rather than endohedral. Moreover, doping leaves the inner core structure of the clusters largely intact.

View Article and Find Full Text PDF