is a prominent member of the human gut microbiota, playing crucial roles in maintaining gut homeostasis and host health. Although it primarily functions as a beneficial commensal, can become pathogenic. To determine the genetic basis of its duality, we conducted a comparative genomic analysis of 813 strains, representing both commensal and pathogenic origins.
View Article and Find Full Text PDFUnlabelled: is a Gram-negative commensal bacterium commonly found in the human colon, which differentiates into two genomospecies termed divisions I and II. Through a comprehensive collection of 694 whole genome sequences, we identify novel features distinguishing these divisions. Our study reveals a distinct geographic distribution with division I strains predominantly found in North America and division II strains in Asia.
View Article and Find Full Text PDFmicrobeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.
View Article and Find Full Text PDFis a Gram-negative commensal bacterium commonly found in the human colon that differentiates into two genomospecies termed division I and II. We leverage a comprehensive collection of 694 whole genome sequences and report differential gene abundance to further support the recent proposal that divisions I and II represent separate species. In division I strains, we identify an increased abundance of genes related to complex carbohydrate degradation, colonization, and host niche occupancy, confirming the role of division I strains as gut commensals.
View Article and Find Full Text PDFType I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses.
View Article and Find Full Text PDFDetermining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids.
View Article and Find Full Text PDFMicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.
View Article and Find Full Text PDFBackground & Aims: Hyperbaric oxygen therapy (HBOT) is a promising treatment for moderate-to-severe ulcerative colitis. However, our current understanding of the host and microbial response to HBOT remains unclear. This study examined the molecular mechanisms underpinning HBOT using a multi-omic strategy.
View Article and Find Full Text PDFUlcerative colitis (UC) is driven by disruptions in host-microbiota homoeostasis, but current treatments exclusively target host inflammatory pathways. To understand how host-microbiota interactions become disrupted in UC, we collected and analysed six faecal- or serum-based omic datasets (metaproteomic, metabolomic, metagenomic, metapeptidomic and amplicon sequencing profiles of faecal samples and proteomic profiles of serum samples) from 40 UC patients at a single inflammatory bowel disease centre, as well as various clinical, endoscopic and histologic measures of disease activity. A validation cohort of 210 samples (73 UC, 117 Crohn's disease, 20 healthy controls) was collected and analysed separately and independently.
View Article and Find Full Text PDFBackground: Vancomycin is commonly used as a first line therapy for gram positive organisms such as methicillin resistant . Vancomycin-induced acute kidney injury (V-AKI) has been reported in up to 43% of patients, especially in those with higher targeted trough concentrations. The precise mechanism of injury in humans remains elusive, with recent evidence directed towards proximal tubule cell apoptosis.
View Article and Find Full Text PDFStaphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of ∼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers.
View Article and Find Full Text PDFGulf War illness (GWI) afflicts military personnel who served during the Persian Gulf War and is notable for cognitive deficits, depression, muscle pain, weakness, intolerance to exercise, and fatigue. Suspect causal agents include the chemicals pyridostigmine (PB), permetrim (PM) and N,N-diethyl-m-toluamide (DEET) used as protectants against insects and nerve gases. No pre-clinical studies have explored the effects on skeletal muscle (SkM).
View Article and Find Full Text PDFEnzyme turnover numbers (s) are essential for a quantitative understanding of cells. Because s are traditionally measured in low-throughput assays, they can be inconsistent, labor-intensive to obtain, and can miss in vivo effects. We use a data-driven approach to estimate in vivo s using metabolic specialist strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution.
View Article and Find Full Text PDFWnt signalling drives many processes in development, homeostasis and disease; however, the role and mechanism of individual ligand-receptor (Wnt-Frizzled (Fzd)) interactions in specific biological processes remain poorly understood. Wnt9a is specifically required for the amplification of blood progenitor cells during development. Using genetic studies in zebrafish and human embryonic stem cells, paired with in vitro cell biology and biochemistry, we determined that Wnt9a signals specifically through Fzd9b to elicit β-catenin-dependent Wnt signalling that regulates haematopoietic stem and progenitor cell emergence.
View Article and Find Full Text PDF