Publications by authors named "Marven El Osta"

Objectives: Newborn screening (NBS) for sickle cell disease (SCD) requires a robust, high-throughput method to detect hemoglobin S (HbS). Screening for SCD is performed by qualitative methods, such as isoelectric focusing (IEF), and both qualitative and quantitative methods such as high performance liquid chromatography (HPLC), capillary electrophoresis (CE), and tandem mass spectrometry (MS/MS). All these methods detect HbS, as well as low-level or absent HbA, and also other variants of hemoglobin.

View Article and Find Full Text PDF

Previous research has shown that a MALDI-MS technique can be used to screen for sickle cell disease (SCD), and that a system combining automated sample preparation, MALDI-MS analysis and classification software is a relevant approach for first-line, high-throughput SCD screening. In order to achieve a high-throughput "plug and play" approach while detecting "non-standard" profiles that might prompt the misclassification of a sample, we have incorporated various sets of alerts into the decision support software. These included "biological alert" indicators of a newborn's clinical status (e.

View Article and Find Full Text PDF

The reference methods used for sickle cell disease (SCD) screening usually include two analytical steps: a first tier for differentiating haemoglobin S (HbS) heterozygotes, HbS homozygotes and β-thalassemia from other samples, and a confirmatory second tier. Here, we evaluated a first-tier approach based on a fully automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platform with automated sample processing, a laboratory information management system and NeoSickle software for automatic data interpretation. A total of 6701 samples (with high proportions of phenotypes homozygous (FS) or heterozygous (FAS) for the inherited genes for sickle haemoglobin and samples from premature newborns) were screened.

View Article and Find Full Text PDF

Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs) is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface.

View Article and Find Full Text PDF

Immuno-SPR-MS is the combination of immuno-sensors in biochip format with mass spectrometry. This association of instrumentation allows the detection and the quantification of proteins of interest by SPR and their molecular characterization by additional MS analysis. However, two major bottlenecks must be overcome for a wide diffusion of the SPR-MS analytical platform: (i) To warrant all the potentialities of MS, an enzymatic digestion step must be developed taking into account the spot formats on the biochip and (ii) the biological relevancy of such an analytical solution requires that biosensing must be performed in complex media.

View Article and Find Full Text PDF